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I. INTRODUCTION

AGNETIC Resonance Imaging (MRI) provides images

with high contrast between water-containing organs and
their surrounding tissue. Multiple frames can be captured in
succession to create a video of organs at a specific spatial slice.
This makes it useful for diagnosing heart related problems.
Segmentation of the heart is important in calculating properties
such as ejection rate and epicardium thickness. Segmentation
is a labor intensive task, however, and various automated
cardiac segmentation algorithms have been devised.

Markov Random Fields (MRFs) are a popular technique in
medical segmentation. Segmentation is posed as a problem
of associating a label (often binary) to regularly spaced sites
(often per pixel). MRFs then model the relationship between
a site’s label and the observed pixel value at a site as well
as a site’s label and its neighbor’s label. Efficient inference
is often done through belief propagation or graph cuts. This
works especially well when extracting homogenous objects
such as the blood pool. The left ventricle, however, contains
two papillary muscles. When modelling the cell wall it is
desirable to include these muscles in the segmentation. The
graphical model for this MRF effectively creates a surface
of nodes over the image. We therefore refer refer to these
techniques as surface MRFs. This type of model does not
encode any shape information. Brain models?

Information on the shape of the cardiac wall and surround-
ing structures is typically exploited with the use of Active
Shape Models (ASMs). This transforms the segmentation’s
contour into a shape space in which searches are done. Inte-
grating temporal information, however, is only often implicitly
through an online tracking algorithm (e.g. greedy or Kalman
filter).

We choose to model the contour edge directly in what we
call an edge MRF. This allows us to integrate shape and
temporal information explicitly through feature functions. By
applying belief propagation for inference this naturally leads
to offline segmentation.

We will describe our edge model in more detail, briefly
describe MRFs and how inference and training is done. We
concluded with quantitative and qualitative evaluation and
a comparison to existing methods followed by concluding
remarks.

Your name is with Stellenbosch University

II. RELATED WORK

Andreopoulos and Tsotsos [1] fit a 3D active appearance
model and investigate a hierarchical 2D + time active shape
model (ASMs), that integrates temporal constraints by using
the third dimension for time instead of a spatial dimension.

Various heuristic methods exist to segment cardiac MRI
images. One that is of interest due to its similarity in con-
figuration space is... It is interesting to compare ... They also
work in logpolar space in which the least cost path from top to
bottom is defined as the wanted contour. Defining cost function
to realize this is neccesary. If we limit our model to a single
frame (i.e. remove temporal linkage) belief propagation will
find an estimate of the least cost path through a cost function
defined on the polar image.

III. PROBLEM FORMULATION

Problem statement: when given a single frame D(t) =
g(x,y) at time ¢t we wish to find the contour z(t) =
(z(t),y(t)) around the endocardium border.

Figure 1. Captions go under the figure

Because we are working with spherically shaped contours
we can simplify the configuration space by choosing a cen-
ter point ¢(t) for each frame and working in the logpolar
transformed version of the variables. z, = (zp,yn) =
(rinit eXP(Pn)7 ¢7L) +ec

This reduces the size of the configuration space of nodes.
Except for computational efficiency this also has the effect
of making all points within the state space valid realistic
contours. As apposed to the nonsensical shapes possible if
we e.g. connect random points in cartesian space.

pn(t)

D, (1)

By knowing the center point we can then refer to the
configuration of a single frame as p(t¢) (i.e. a sequences of
radii).
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Figure 2.  Coordinates on contour

When we are provided with a series of successive frames
we would like to leverage temporal information to find a series
of contours. We therefore generalize our notation to represent
videos and their segmentations: D = {D(¢), t € [1..T]},
z = {z@t),te[l.T)}, p = {pk),tc[l.T)}, p =
{p(t), t € [1.T]}, ¢ ={c(t), t € [1.T]}.

We simplify our problem further with a preprocessing step
that attempts to align frames in a video so they share a
common center point. We assume an adequate value for ¢(0),
the center point for the first frame, is provided by the user.
Many heuristic techniques have also been devised to find a
rough estimate of the endocardium’s location. The prepro-
cessing tries to find a good center point for the next frame
by minimizing the error between aligned frames. Errors are
weighted normally from the previous frames center point. A
side effect is that we have eliminated translations from our data
and allowed our imodel to focus only on deformation of the
size and shape. As long as ¢(0) lies within the endocardium we
have observed good results. Alternating between inferencing
p and re-estimating c is also possible and we believe will lead
to improved results.

IV. MARKOV RANDOM FIELD

A probabilistic formulation of our problem allows us to
apply various modeling and inference techniques. Specifically
if we are given a sequance of frames D we would like to
find the set of contours p* that maximizes the conditional
P (p|6, D). 6 is a set of parameters to be learnt.

We model the relationship between our variables (p, D
and @) with a Markov Random Field G. An MRF expresses
conditional independance between random variables and can
be used as a basis for inferencing the most likely values of
unknown variables. We use the class of MRFs that can be
factorized in terms of its cliques with a partition function Z
that normalises the product into a p.d.f. A single slice of our
MREF is shown in Figure |3} Only N = 6 is shown and in
reality 7" rings are connected as shown in Figure

Through the Hammersley-Clifford theorem we can express
the conditional in terms of the product of clique potential
functions

Figure 3.  Graphical model of a single slice

giéifﬁ

Figure 4.  Graphical model with temporal info

P(pl6.D) = —— T[ wvo(pclbc.De) (1)

with a partition function Z (@) that normalizes the product.

z0)=>_ ][I tc(pcloc.De) )

p Cecl(G)

Expressing all potential functions as a log
linear combination of weighted feature functions
Yo = exp(lcfeo(pe,De)) allows us to simplify the
above into

P(pl6,D) = ——exp(—E(pl6. D)) (3

1
Z (0)

With energy defined as
E(pl6,D) = bcfc(pe, De) )
c
and partition function
Z(0) =Y exp(~E (p|6, D)) 5)
p

Note that feature functions are defined over the variables in
a clique.

Expressing the probability of a configuration in terms of an
energy function simplifies many calculations.
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A. Feature Functions

We encode our dependancies as a weighted sum of feature
functions. Functions were experimentally designed to yield
small values for our segmentation and larger ones otherwise.
Feature functions are positive and normalised to mostly be
smaller than 1. This allows us to take € as positive and
interpret it as purely scaling values.

Three types of cliques (and thus feature functions) exist
based on the types of joint probabilities modeled: image-
node dependance . (p, (t), Dy, (t)), spatial node-node de-
pendence . (py, (t), pn—1 (t)) and temporal node-node de-
pendance e (pn (t) ) Pn (t - 1))

1) image-node functions: We seek a small response for
strong negative edges (edge lies from light to dark areas going
radially outwards)

fl (pn(t)v Dn(t)) =1+ (Dn+1(t) - Dn(t)) /255 (6)

1
mean(n,t,m) = p. Z D, (t,m") (7
m
minimize included deviation from mean

var(n,t,m) = e Z (D, (t,m') — mean(n, t,m))”

m’

®)

f2 (pn(t), Dn(t)) = /var(n,t,m) ©)

color ratio. less sensitive to scaling of pixel values

Fs (pult), D (1)) = (arctan DIZL /(%)) (10)

2) spatial node-node functions: Through analysis of shapes
in training sets we see that segmentations are elliptical with
vertical axis longer than horizontal. The difference between
neighboring radii is thus dependance on their angular position.
Specifically y is a function of n:

P (t) = p—1 (t) ~ N (1 (n), 0% (n)) (11)

We therefore introduce a feature function as follows:

éeach (pn(t)7pn—1(t)) = ((pn(t) — pn—l(t)) — M (n))2 /M2
(12)

We also try to minimize the color difference between nodes

FE N (pu(t), pu—1(t)) = (Dn(t, pu(t)) —
(13)

3) temporal node-node functions: There is definate shrink-
age over sistole and growing over diastole, however we cannot
depend on a series of frames starting and ending at peak
diastole.

pn () = pp (t = 1) ~ N (u(t) 0% (1)) (14)

Therefore we assume edge coordinates changes gradually
over time () =0

iime (Pn(t),Pn(t _ 1)) = (pn(t) — pn(t - 1))2 /M2 (15)

V. INFERENCE

When a segmentation is required for a provided sequence of
frames we run an inference algorithm on our MRF. Specifically
we want to find the configuration p*:

p* = argmax P (p|6, D) (16)
P
However, because Z (@) is independant of p, we can
reduced this to finding
p* =argmin F (p|@, D) (17
P
For inference problems that can be expressed as a tree we
can run the min-sum algorithm and calculate an exact value
for p*. Unfortunately because of the linkage between frames
and the spatial circular connectivity of each frame we have a
graphical model with many loops. There is currently no known
way to efficiently calculate p* exactly as maximization of the
above is NP-complete, however loopy belief propagation has
been used with success in the past. Sufficient conditions for
convergence are coming to light.

A. Factor Graphs

Factor graphs are bipartite graphs that indicate the relation-
ship of feature functions (factor nodes) and the variables which
they are taken as arguments (variable nodes). This is not only
useful as a design tool, but also simplifies illustration of belief
propagation calculations. Our factor graph is shown in Figure

a
177
~f@“—fbx{iw /ﬂ
t

In belief propagation messages sent from a factor node
summarizes away lower nodes by maximizing over lower

Diy_1(t, pn_1(t)))* /25atiables. Our implementation only stores messages emmited

from factor nodes as those sent from variable nodes are already
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included in their calculation. The node values that maximizes
parts in a message is also stored for use when backtracking.

Belief propagation requires one to specify a specific shedule
by which messages are passed through the graph. We initialise
all messages to zero and propagate through one frame at a
time. We pass messages sequentially through nodes in each
frame.

Messages my (p,—1(t)) is an array of length M, i.e. a value
evaluated for each value p,(t)

Pn

p'=arg m;:LxP (pl6, D) (22)

Because we can calculate the above (inference) without
having to calculate Z (@) we avoid this issue. This does leave
us in a position where we are not able to directly calculate a
gradient in 8-space that would be useful in iterative techniques.

Iterative techniques that estimate local gradients (such as
BFGS) could potentially be used. However there is the prob-
lem of local optima and saddle points. When working in higher
dimensions estimating the gradient is expensive and may be

my (pn-1(t)) = min, D Ok (pa(t), pa1 (D) +mu (pa(t))+mef aifinishingrresurfon (¢ + 1))
k

Through experimentation # interations seem to work best.
We propagate messages within a frame before propagating
them to the next frame.

Additionally we implement our belief propagation with a
beam search. For example, evalutation over all p,_; when
calculating max,, , mgr(pn, pn—1) is often unnecesary due
to spatial continuity restrictions in our contours. Specifically
through inspection we found that |p,(t) — pp—1(t)| < 6 and
|on(t) — pn(t — 1)| < 50 in our training set.

pn(t) = arg m%(u§P(pl0, D) (18)
pn(t
pn(T)* = arg max P(p|0, D) (19)
pn(T)

S(pn(T)) = mr (pn(T)) +mg (pn(T)) + mup (pn (1))

pn(T)* = arg min S(pn(T)) (20)
pn(T)

Backtracking in frame 7. First find py(7T)*. Find the
pn—1(T) that maximizes m (pn(T)). this is repeated for all
N nodes in frame 7". We can then move to the next frame 7'—1
by finding the value p,,(T"—1) that maximized myp (o (T)*).
This is done for all N and we then continue to the next frame.

VI. TRAINING

Finding the best parameters, 6, is done by considering a
set of training videos, D"™", and their provided segmentations,
Ztrain'

Maximum likelihood estimation often works well for other
kinds of machine learning training problems, so it’s natural
to attempt a similar formulation. However we can see from
above that Z (6) would require evaluation which is mathe-
matically intractible (belief prop?). Various ways to address
this difficulty exist such as pseudo likelihoods and monte carle
techniques.

We attempt to avoid this issue by rather searching for
the value for @ that would minimize the error between seg-
mentation that is yielded by the inference process and the
segmentation in the training set.

train

0" = arg mein dist(p™", p*) (1)

We employ random search technique: From an initial guess
for 8 we sample from a normal distribution centered at this
value 0. ~ N (6,_1,02 (7)), shrinking the variance o2 (7)
over iterations. If the sampled 6 produces a smaller error we
use this one in the next iteration.

This is similar to simulated annealing, however we do
not have an acceptance test and only favour moves that go
“downhill”. This adds to the risk of not being able to escape
from local minima.

convergence

VII. EVALUATION

We evaluate our methodology against the York dataset [1]].
Originally developed to showcase ASM tracking it contains
30 patients each with around 10 sequential frames at around
10 different slice positions. Each frame is annotated with
the endocardium border. Videos of 15 patients are taken for
training and 15 for testing.

It currently takes around 2 seconds per frame to run
inference using a 2.6 GHz processor.

numbers

runtime

Table 1
TABLE CAPTIONS GO above THE TABLE

VIII. CONCLUSIONS

We hope further techniques become available that will allow
offline tracking to be prefered choice. Offline tracking should
be more robust and not lose tracking as easily.

Shape information is local as apposed to the global nature
of the state space in which ASMs work. This seems to place
some limitations on MRF’s expressive power.

It is easy to integrate temporal information into an MRF.
The probabilistic nature allows us to gradually integrate addi-
tional information as it becomes necessary.

We hope to have demonstrated through our application
of edge MRFs to cardiac segmentation that edge similar
techniques could hold promise for segmentation and tracking
in general.
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