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Abstract

This dissertation considers automatic segmentation of the left cardiac ventricle in short

axis magnetic resonance images. The presence of papillary muscles near the endocardium

border makes simple threshold based segmentation difficult.

The endo- and epicardium are modelled as two series of radii which are inter-related us-

ing features describing shape and motion. Image features are derived from edge informa-

tion from human annotated images. The features are combined within a Conditional Ran-

dom Field (CRF) – a discriminatively trained probabilistic model. Loopy belief propagation

is used to infer segmentations when an unsegmented video sequence is given. Powell’s

method is applied to find CRF parameters by minimising the difference between ground

truth annotations and the inferred contours. We also describe how the endocardium centre

points are calculated from a single human-provided centre point in the first frame, through

minimisation of frame alignment error.

We present and analyse the results of segmentation. The algorithm exhibits robustness

against inclusion of the papillary muscles by integrating shape and motion information.

Possible future improvements are identified.
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Opsomming

Hierdie proefskrif bespreek die outomatiese segmentasie van die linkerhartkamer in kort-

as snit magnetiese resonansie beelde. Die teenwoordigheid van die papillêre spiere naby

die endokardium grens maak eenvoudige drumpel gebaseerde segmentering moeilik.

Die endo- en epikardium word gemodelleer as twee reekse van die radiusse wat beperk

word deur eienskappe wat vorm en beweging beskryf. Beeld eienskappe word afgelei van

die rand inligting van mens-geannoteerde beelde. Die funksies word gekombineer binne ’n

CRF (Conditional Random Field) – ’n diskriminatief afgerigte waarskynlikheidsverdeling.

“Loopy belief propagation” word gebruik om segmentasies af te lei wanneer ’n ongeseg-

menteerde video verskaf word. Powell se metode word toegepas om CRF parameters te

vind deur die minimering van die verskil tussen mens geannoteerde segmentasies en die

afgeleide kontoere. Ons beskryf ook hoe die endokardium se middelpunte bereken word

vanaf ’n enkele mens-verskafte middelpunt in die eerste raam, deur die minimering van ’n

raambelyningsfout.

Ons analiseer die resultate van segmentering. Die algoritme vertoon robuustheid teen

die insluiting van die papillêre spiere deur die integrasie van inligting oor die vorm en die

beweging. Moontlike toekomstige verbeterings word geïdentifiseer.
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Chapter 1

Introduction

1.1 Problem description

Cardiovascular diseases are the leading cause of death worldwide [48]. The quality of pa-

tient diagnosis and prognosis depends on the accurate measurement of cardiac properties,

which can be derived from annotations of images of the cardiac structure. Annotation

by human specialists in modalities such as magnetic resonance imaging is a time inten-

sive process. Additionally, when papillary muscles are close to the endocardium a strong

edge is absent which can lead to inconsistent annotations. Accurate segmentation therefore

needs integration of spatial and temporal information. Since only one frame is annotated

at a time, it is difficult for a human to take temporal information into account during anno-

tation.

Automation of the segmentation process therefore has numerous benefits, even if used

only to aid and not fully replace a human annotator. A number of automated segmentation

techniques exist, but the integration of spatial and temporal information remains challeng-

ing. These challenges are addressed in this study.
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1.2 Background

1.2.1 Cardiac MRIs

The heart’s primary function is that of receiving oxygen poor blood from the body, moving

it through the lungs and then distributing the oxygenated blood to the rest of the body.

Figure 1.1 illustrates a short-axis view of the basic cardiac structure.

RV LV

epicardium
cardiac wall
endocardium

papillary muscles

Figure 1.1: Simplified diagram of the left and right ventricles.

Stated simply, the right ventricle receives de-oxygenated blood from the body during

ventricle relaxation (diastole) and pumps it to the lungs on contraction (systole). Simulta-

neously oxygenated blood is received from the lungs into the left ventricle during diastole

and forced to the rest of the body on systole. The left ventricle therefore operates at a higher

pressure than the right and consequently has more muscle mass.

Figure 1.2: MRI short axis view of cardiac ventricles and surrounding structure.
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Figure 1.2 shows a Magnetic Resonance Imaging (MRI) short-axis view of the cardiac

ventricles and their surrounding structure. Magnetic Resonance Imaging is used in the

visualisation of internal structure by producing images where high pixel intensity corre-

sponds to a higher water content.

Cardiac MRI has a number of important advantages when compared to alternative

imaging modalities such as X-ray computed tomography and ultrasound. It is non-invasive,

does not emit ionising radiation, can be used with multiple imaging planes and has a wide

topological field of view. Additionally, as MRIs respond to water content it can be used to

produce images that have a high discriminative contrast between blood, the myocardium

and surrounding soft tissues.

Magnetic Resonance Imaging can also produce a series of images in succession. Fig-

ure 1.3 contains frames from a video sequence of MRI short axis view of the cardiac ventri-

cles, synchronised to a single cardiac cycle. The left ventricle undergoes contraction (sys-

tole) in the images T = 0 . . . 8 and relaxation (diastole) during T = 9 . . . 20.

Figure 1.3: Video sequence of MRI short axis view of cardiac ventricles. The left ventricle
undergoes contraction (systole) during images T = 0 . . . 8 and relaxation (diastole) during
T = 9 . . . 20. Only even numbered images T = 0 . . . 18 are shown for brevity.

The direction of blood flow through the ventricles is controlled by heart valves. The

opening and closing of the valves are driven by the pressure gradient across the valves.

Papillary muscles (Figures 1.1 and 1.2) and chordae tendineae (“heart strings”), inside the

ventricles, prevent the valves from inverting, which could cause backward flow of blood

from the ventricles into the atria.
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1.2.2 MRI capture and annotation

The cardiac MRI acquisition protocol often requires that the subject holds their breath while

a video sequence of successive images is taken. Focus of the MRI instrumentation is then

moved to a different short axis slice and the acquisition is repeated. If the subject breathes

between different slices, then, due to different levels of inhalation and expiration, the car-

diac structure can undergo significant displacement. For this reason we have not integrated

information from different spatial slices into our model and focus only on the annotation

of temporal sequences of images for a single slice, as shown in Figure 1.3.

Properties of the left ventricle, such as volume, ejection fraction [49] and wall thickness

are important indicators for the diagnosis and prognosis of many heart-related problems.

Motion and deformation descriptors also include ventricle boundary wall motion, endocar-

dial motion, wall thickening and strain analysis. Many of these are conveniently extracted

from Magnetic Resonant Images (MRIs). The calculation of these properties requires accu-

rate annotation of the left ventricle to isolate it from its surrounding structure. Figure 1.4

contains an example of human annotated inner and outer contours of the left ventricle in a

single image.

epicardium
endocardium
cardiac wall

papillary muscles

Figure 1.4: MRI short axis view of ventricles with human annotated (inner and outer) con-
tours shown in yellow. Surrounding tissue is omitted for illustrative purposes.

Manual annotation is a tedious process and lacks consistency between human annota-

tors [2, 21] and even between separate annotations by the same annotator. This problem

primarily arises from the apparent ambiguity as to the extent to which the papillary mus-

cles influence and, possibly, obscure the endocardium border. For research on the effects

that discrepancies in annotations of the papillary muscles can have on the calculation of left
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ventricle function and mass see e.g. [7,21,56]. When modelling the structural properties of

the ventricle wall, it is often desirable to include these muscles inside the inner contour.

The examples in Figure 1.5 illustrate the presence of papillary muscles close to the en-

docardium border and a human annotator’s segmentation. From inspection of the human

annotation, it is clear that the presence of the endocardium border is inferred from prior

external information of the motion and shape of the ventricle, and not only from what is

available in the image itself, such as strong intensity gradients. Such considerations are

likely to lead to inconsistencies, in particular when there is little difference between the

intensity of the endocardium and surrounding structure.

Figure 1.5: Presence of papillary muscles obscure the edge of the inner contour due to its
similar intensity to the cardiac wall. Human annotated inner and outer contours are shown
in yellow. Surrounding tissue is cropped for clarity.

1.3 Literature overview

A number of automated techniques have been developed for the segmentation of the left

ventricle from its surrounding structure (see e.g. [16, 44, 46]). For a review of deformable

models in medical image analysis see e.g. [36]. We will briefly discuss the most popular

techniques.

Active Shape Models (ASMs, [10]) track the edges in a video sequence by modelling

the contour shape using methods such as Principal Component Analysis. This is often

5



combined with a Kalman filter to incorporate temporal smoothing in an online tracking

framework. Typically only past information is used and future images ignored, often with

adverse consequences if the tracked object temporarily disappears from view or signifi-

cantly reduces in size. Note also that this technique often relies on annotating the first

frame.

Andreopoulos and Tsotsos [3] fit a 3D Active Appearance Model (AAM) and investigate

a hierarchical “2D + time” ASM that integrates temporal constraints by using the third

dimension for time instead of space.

Generative models such as Markov Random Fields (MRF) are popular in pixel labelling

and de-noising problems [31]. Most image segmentation applications of MRFs also model

the texture within a region and are constructed to favour spatially smooth regions. These

“surface modelling” MRFs are often used to isolate homogeneous objects from their back-

grounds. The left ventricle, however, contains papillary muscles (see Figure 1.4), rendering

this approach less effective.

Lorenzo-Valdés et al. [32] implement a surface MRF for cardiac segmentation. From

their reported examples it is clear that the papillary muscles are not included. As surface

MRFs do not model the edge explicitly, they do not directly encode any shape information.

There have been attempts to unify models of the edge and surface: specifically, Huang R.

et al. [19] propose coupling surface MRFs with a hidden state representing a deformable

contour.

Cordero-Grande et al. [11] construct an generative MRF model of the inner and outer

contours. They use the Gibbs sampling algorithm to extract segmentations and parame-

ters. Modelling the image likelihood, as is typical in MRFs can, however, lead to intractable

models with complex dependencies between local features. This can lead to reduced per-

formance if oversimplified [51]. Careful manual design of the probability distributions is

therefore often necessary.

Also of interest is the approach by Jolly [23], in which the segmentation problem is

set in log-polar space where the least cost path in a single frame (calculated by dynamic

programming) is defined as the desired contour. A cost function, which is related to an

initial labelling of blood pool pixels, is required to determine the correct contour. This

bears a similarity to our approach: if we limit our model to a single frame (i.e. remove

6



temporal linkage) belief propagation reduces to an estimation of a least cost path similar to

that produced by dynamic programming.

Heiberg [18] constructs filters for the detection of concordant (signed) and discordant

(unsigned) edges for the inner and outer contours.

Previously, in Dreijer et al. [13] we investigated modelling the endocardium edge using

a semi-conditional MRF with mostly heuristically chosen features. Although this approach

showed promise, practical experiments indicated a strong attraction between the resulting

contour and the epicardium. This is attributed partly to the epicardium’s stronger edge

with respect to surrounding tissue. In the present study, the outer contour is also explicitly

included in the model, establishing a statistical relationship between the two contours.

In addition we derive discriminative feature functions from human annotated images to

improve performance. We also discuss this work in Dreijer et al. (2013) [14].

In summary, a number of methods are currently available, with the integration of tem-

poral and spatial constraints and the presence of the papillary muscles still posing signifi-

cant challenges [44].

1.4 Objectives of this study

Taking into account the challenges discussed above, the main goals of this dissertation are

1. developing a model for cardiac MRI segmentation which should

(a) integrate edge, shape and temporal information derived from an annotated dataset,

and

(b) mitigate the effect of papillary muscles on the segmentations

2. developing a strategy to efficiently infer segmentations from this model

3. developing a strategy to tractably derive suitable estimates of the model parameters.

1.5 Contributions

To achieve these goals we make the following contributions:
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1. present a novel formulation of the left ventricle MRI segmentation problem through

(a) a Conditional Random Field (CRF) model of the inner and outer contours

(b) local gradient features derived from a discriminatively trained edge classifier

(c) contextual feature functions derived from spatial and temporal properties of an-

notated segmentations

2. develop a process for the accurate segmentation of the left ventricle through

(a) offline tracking of the centre point

(b) a loopy belief propagation schedule for efficient inference of the inner and outer

contours

3. suitable parameter estimation through

(a) minimisation of a segmentation error through the application of a gradient-free

optimisation technique

(b) and thus avoiding the calculation of the intractable CRF partition function present

in a maximum likelihood setting.

We have fully implemented a process that can be used to quickly segment video sequence

and thereby replace the time intensive annotation work currently required from a human

specialist. The technique is also able to mitigate the effects of papillary muscles close to the

endocardium border by integrating information from temporally bordering frames. We

show that the trained model also easily adapts to new datasets and outperforms many

existing techniques.

1.6 Overview of this dissertation

The primary focus of this dissertation is the semi-automatic segmentation of the left ven-

tricle into an inner and outer contour from a probabilistic model. An introductory back-

ground on the probabilistic approach is presented in Chapter 2.

In Chapter 3 we assume that the inner and outer contours form approximately circu-

lar shapes around a shared centre point in a single frame. This allows us to simplify the
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problem by applying the log-polar transform of each image in the video sequence and then

representing a contour at a specific time as a series of radii around the centre point. The

non-linear nature of the log-polar space provides for a higher resolution for small contours

since, after discretisation, a finer grid is used to represent the area near the centre point.

The centre point for each image is automatically derived from an operator provided

centre point for the first image by searching for centre points that minimise a weighted

inter-frame alignment error. This is done through dynamic programming.

Features based on discriminative edge properties, local shape information and local

temporal behaviour are weighted and combined in a log-linear Conditional Random Field

model. The edge properties are derived from a neural network (with two nodes in a hidden

layer), trained on examples of inner and outer contour edges.

To infer segmentations when a new video sequence is presented, we employ loopy

belief propagation (Chapter 4) to query this model. The order of message propagation

and backtracking is chosen to mitigate the effects of its approximate nature.

Suitable CRF weights are estimated by considering the training problem as a minimi-

sation of the difference between the resulting inferred segmentations and the ground truth

(Chapter 5). This has the advantage of avoiding the intractable calculation of the partition

function that would be needed in a maximum likelihood setting. Our approach explicitly

focuses on minimising a specific error metric, instead of trying to model the “true” distri-

bution.

This does, however, lead to a non-convex objective function and causes difficulty in cal-

culating its derivatives. We select optimal parameters through the application of a gradient-

free optimisation method.

The derivation of the feature functions and their weights is done against the York car-

diac MRI dataset (Chapter 6). We find that the features derived from example edges are

able to exploit the difference in edge gradients on the left and right sides of the cardiac

structure. Analysis of the resulting segmentations in a cross validation scenario indicates

that, for the majority of video sequences, segmentations are in line with expected behaviour

with regard to shape, position and motion. Of particular note is the inclusion of the papil-

lary muscles inside the inner contour and robustness with regard to noisy images.

Quantitative analysis indicates that the majority of errors occur during end-systole, es-
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pecially at lower slices of the heart, if the endocardium disappears from view. This is to be

expected, as the current model assumes that both the inner and outer contours are present

in all images.

We analyse the sensitivity of the quality of segmentations to the choice of the initial

centre point. We determine that segmentations remain relatively good, as long as this point

is within 20% of the distance between the actual centre point and endocardium border.

We also evaluate the generalisability of our technique by applying it to the Sunnybrook

cardiac MRI dataset, which is from a different source. Only the CRF parameters are re-

trained, while re-using the feature functions (e.g. edge-information and inner-outer ratio

behaviour) as derived from the York dataset. We find good segmentation results that are

competitive or superior to the results as reported by other authors on this dataset.

Current limitations in our model (Chapter 7) are primarily due to the formulation of

the segmentation problem. If the endocardium completely disappears from view during

systole, the segmentation is unlikely to be correct since the possible absence of an inner

contour is not taken into account. Additionally, using the same centre point for the inner

and outer contours is problematic as, while the outer contour remains relatively static, the

endocardium can undergo significant translation.
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Chapter 2

Probabilistic models

In this chapter we provide an overview and motivation for the probabilistic approach used

in the rest of this dissertation. Discriminative models, specifically the Conditional Random

Fields, are briefly discussed. For a practical overview of these probabilistic models, see

e.g. [5, 25, 27, 31, 37].

2.1 Probability distribution as a model

Consider the supervised-learning classification task where, during a training phase, exam-

ples of input values x(i) together with their targets y(i) are specified. Specifically, in our

application x(i) is a video sequence of images and y(i) their human annotations. During

inference a new value x(j) is observed and we want the system to automatically assign a

suitable target, y?(j) — the optimal choice between all possible targets. The development

of techniques that generalise to the mapping of an input observation to an output value

y = f (x) (2.1)

is central to all sciences that attempt to construct models for use in prediction and optimal

decision making. Consequently a large number of heuristic techniques exist in the various

scientific fields.

The unification of many algorithms, both old and new, under a probabilistic Graphi-
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cal Model interpretation [5, 22, 27, 43] has led to the introduction of efficient algorithms to

various applications from automatic speech recognition to image segmentation.

These unified techniques based on probabilistic models have gained popularity within

the machine learning community over recent years [25]. Under a Bayesian interpretation,

probabilities represent a logically consistent approach to reason in the presence of uncer-

tainty [22]. More specifically, under this interpretation, probability distributions are mod-

els of relative certainty that, once their properties are derived from observations and prior

knowledge, can be queried (inference) for optimal decisions on the unobserved [22, 43].

Various conditional and marginal probabilities can be constructed from both prior do-

main knowledge and training examples if both the input x and target y are observed, e.g.

P (x), P (y), P (x, y), P (x|y), P (y|x)1. These probability distributions can then be queried

to find the most reasonable target when given only an input (observation), x(j), i.e.

y?(j) = arg max
y

P
(

y|x(j)
)

. (2.2)

Probability distributions are used in this dissertation to model the relationship between

the video sequences and their segmentations. These are then used to infer the most likely

segmentation when only a video sequence is observed, i.e. the segmentation with the max-

imum probability conditioned on the images. This is further discussed in Chapter 4.

2.2 Generative and discriminative models

In a generative model the probability of the observations x conditioned on the latent vari-

able y is explicitly modelled, i.e. P (x|y). This allows one to generate instances of the ob-

servations x given an instance y.

In supervised learning, when the best configuration y?(j) given a new observation x(j) is

sought, the configuration that maximises the posterior distribution is required, i.e. y?(j) =

arg maxy P
(

y|x(j)
)

. The primary strategy in applying these generative models to classi-

fication problems is to build a complete probabilistic model for each class, P (x|y), and

1We use the capital P to refer to both discrete and continuous probability distributions. It should be clear from
the context which is used.
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derive the posterior P (y|x) through Bayes’ theorem,

P (y|x) = P (x|y) P (y)
P (x)

. (2.3)

Much research has been conducted into suitable choices for the prior distribution P (y).

If only the maximising configuration is sought (as in (2.2)) and not its probability then P (x),

the marginal likelihood of the data, can be ignored as it does not influence the selection of

the optimal configuration.
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Figure 2.1: Example of two linearly separable classes with complex distributions.

As a simple example to demonstrate the generative approach, consider the simulated

two-class problem in Figure 2.1. We wish to construct a classifier that assigns new obser-

vation to an appropriate class. In a generative approach we fit two distributions to the

training data to represent the two classes, i.e. P (x|y = 0) and P (x|y = 1). For a new obser-
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vation x(j), the most likely class is then derived from Bayes’ theorem,

y?(j) = arg max
y∈{0,1}

P
(

y|x(j)
)

(2.4)

= arg max
y∈{0,1}

P
(

x(j)|y
)

P (y)

P
(
x(j)
) (2.5)

= arg max
y∈{0,1}

P
(

x(j)|y
)

P (y) . (2.6)

The prior P (y) is, for example, the fraction of examples from each class present in the

training set. The more challenging aspect is the modelling of the class-specific distributions

P (x|y = 0) and P (x|y = 1). Note from the illustration in Figure 2.1 that the data from the

two classes are unlikely to be well represented by a simple Gaussian distributions. Many

of the observations can be better represented by more flexible distributions, requiring more

parameters.

The primary problem with this approach is that the available parameters (freedom in

the model) is used to build two complete models of the classes. This implies that we also

attempt to model data that are far from the separating boundaries which are unlikely to be

confused during classification. If we are only interested in classification, then a more useful

endeavour might be to put all the effort into attempting to model the separating boundary

instead, i.e. use all available parameters to model P (y|x) directly. This is known as the

discriminative approach and has the advantage that modelling the potentially complex

likelihood of x is unnecessary.

There are various trade-offs between generative and discriminative models and their

performances are often application dependent. See e.g. [27] for a discussion. Generative

models, for example, are generally easier to adjust to changes in the individual classes

and are easier to extend to unsupervised learning scenarios. Generative models, however,

also generally assume independence between subsets of x to improve tractability in higher

dimensions. This simplification can be detrimental to classification accuracy if sufficiently

complex dependencies exist between the observed variables [51].

We use a discriminative model in this dissertation, specifically the Conditional Random

Field, which is discussed in the next section.
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2.3 Conditional random fields

A Conditional Random Field [29, 53] models the conditional probability of a set of un-

observed/latent variables y given a set of observations x, i.e. P (y|x). This probability is

represented as a product of local potential functions,

P (y|x) = 1
Z (x) ∏

q∈Q
ψq

(
yq, x

)
, (2.7)

where the normalisation, Z (x) = ∑y ∏q∈Q ψq

(
yq, x

)
, sums over all possible configura-

tions of y. Notice that the CRF is discriminative in nature.

The potential functions ψq

(
yq, x

)
encode relationships between subsets, or cliques q ∈

Q, of the latent and observed variables. As such, it not only models the affinity between

each latent variable and the observed variables, but also the contextual relationships be-

tween the latent variables. This is useful where consistency between assignments to the

latent variables is important, i.e. where they are not statistically independent.

The selection of these potential functions is part of the design and training processes.

Generally, the potential functions are non-negative and large when dependent variables are

“compatible” (their values are likely to occur together) and small when incompatible. The

un-normalised product of the potentials is thus large when evaluated on instances from the

modelled distribution and small otherwise.

The partition function Z (x) normalises the product of potentials so that the probabili-

ties sum to one. The summation over all possible configurations of the latent variables, y,

is combinatorial in the number of latent variables and thus not computationally tractable

in general. This has important implications for training and is discussed further in Chap-

ter 5.1. When inferring an optimal configuration y? for the latent variables (i.e. one that

maximises (2.7)) the partition function can, however, be ignored as discussed in Chapter 4.

The CRF is different from the Markov random field (MRF) which generatively models

the probability distribution of the observed variables, given different configuration of the

latent variables P (x|y) or their joint distribution P (x, y). The main advantage of a CRF

is its discriminative nature, i.e. it does not require a detailed model of the observed infor-

mation. Instead, computational resources are allocated to modelling the behaviour of the
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latent variables, as explained above.

Indeed, note in (2.7) that while each potential function is defined over a subset of the

latent variables, they are also defined over the joint of all the observed variables. This

is practical in a CRF since modelling of the complex dependencies between the observa-

tions is not needed, which allows the use of discriminative models of the potentials. In

MRFs these complex dependencies are modelled with generative models, which, for com-

putational reasons, are often simplified, for example, by assuming independence between

subsets of the observed variables.

Popular applications of CRFs include natural language processing and computer vision

to segment and label images. Their popularity is partly due to their ability to manage the

complex relationships between the observed variables that are present in these domains.

2.4 Efficient factorisation

The presence of many variables can make operations on probabilistic models computa-

tionally expensive. During inference, e.g., in (2.2), maximisation is done over all possible

configurations of y, which is intractable in general. A generalised distributive law [1],

however, applies to various mathematical operations, e.g. the summation of products, the

maximisation of products and the minimisation of sums. It is therefore often possible to re-

work these expressions into a manageable form through factorisation. Belief propagation,

a specific inference algorithm, is further discussed in Chapter 4 and is based on this idea.

Factor graphs [28] are useful in the design and illustration of these algorithms, which

are efficient and exact for simple graphs and, upon further extension, approximate in the

presence of complex interdependencies between variables where many loops are present.

Factor graphs, e.g. Figure 2.2, are bipartite graphs with circular nodes representing vari-

ables and square nodes representing functions that relate the connected variables. Ob-

served variables are often shaded and latent variables unshaded. Factor graphs illustrate

the factorisation of a function into sub-functions that are dependent on subsets of the vari-

ables.

In the case of the factorisation in (2.7), the potentials ψq are the sub-functions that lo-

cally relate the variables. The un-normalised joint probability of a configuration, i.e. (2.7)
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Figure 2.2: Two example factor graphs.

without Z (x), is thus simply the product of the potential functions. The illustrations in Fig-

ure 2.2 represent the example factorisations ψ (x1, y1)ψ (x2, y2)ψ (x3, y3)ψ (y1, y2)ψ (y2, y3)

and ψ (x1, y1)ψ (y1, y2, y3).

The details as applied to the problem of this dissertation, are discussed in Chapter 4.
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Chapter 3

Model description

In this chapter we discuss the segmentation of a video sequence of cardiac images as a

collection of radii around a series of centre points. We also describe a semi-automated

technique to determine centre points for all frames in the sequence from knowledge of

the centre point in the first frame. Features describing local edge information, spatial and

temporal behaviour and the ratio between the inner and outer contours, are derived from a

training dataset. These features are weighted by parameters and combined in a Conditional

Random Field.

3.1 Problem formulation

We refer to the left ventricle endocardium as the inner contour and the left ventricle epi-

cardium together with the right ventricle’s endocardium bordering the septum as the outer

contour, as is indicated in Figure 1.4.

Our primary interest is in automatically segmenting a video sequence of T greyscale im-

ages I (0) , . . . , I (T−1) that is synchronised to a single cardiac cycle so that the first image

I (0) is before systole (contraction) and the last image I (T−1) after diastole (relaxation).

End-systole (maximum contraction) thus occurs in the middle of the sequence at approx-

imately I (T/2). We refer to the greyscale value of a pixel within a single image at time t

and at the image-coordinate p, as I (t, p).

Assume an approximately circular shape for both the inner and outer contours of the
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n

Figure 3.1: A representation of coordinates on the inner and outer contours in Cartesian
and polar coordinates.

left ventricle. A closed contour in a frame at time t can then be represented by a series of N

positive real values, r0 (t) . . . rN−1 (t), at uniformly spaced angles, φn = n 2π
N , with respect

to a centre point c (t). We use a single shared centre point for the inner and outer contours

in a frame. Figure 3.1 illustrates coordinates on the inner and outer contours using a small

number of radii. In our implementation we use N = 128 angular directions.

For the implementation of the optimisation described in Chapter 4 it is convenient to

work in the discretised log-space of the radii,

ρn(t) = bM · rinit · log rn(t)c . (3.1)

Here bxc is the floor function of x and rinit = 50 is experimentally chosen such that,

for most segmentations in the training set, ρn(t) ≈ M/2 at end-diastole. The log-radius is

discretised as ρn ∈ {0, . . . , M−1} where M is the resolution of the segmentation. In this

study M = 256 has proven to be adequate. Due to its non-linear nature, one advantage of

the log-space is that it provides a better spatial resolution at smaller radii, which is useful as

the cardiac contours occupy a relatively small area of the images. Discretisation is necessary

for the optimisation strategy as is discussed in Chapter 4.

Figure 3.2 illustrates the log-polar transformed image D (t) of a single image I (t). We

denote the image values in the nth radial direction (i.e. the nth row in the log-polar image)

as the vector dn (t). The greyscale value of a pixel in the log-polar space is then referred to

as dn (t, ρ).
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Figure 3.2: Log-polar transform with human annotated (ground truth) inner and outer
contours in yellow. The centre point is chosen near the middle of the endocardium.

The inner and outer segmentation contours in a single frame are thus fully represented

as two vectors of log-radii,

ρin(t) =
{

ρin
0 (t), . . . , ρin

N−1(t)
}

(3.2)

ρout(t) =
{

ρout
0 (t), . . . , ρout

N−1(t)
}

, (3.3)

relative to the centre point c(t). The segmentation of a video sequence of frames is repre-

sented by a sequence of these inner and outer radii, ρ =
{

ρin, ρout}, around a sequence of

centre points c = {c(t)}t=0,...,T−1, where

ρin =
{

ρin(0), . . . , ρin(T−1)
}

(3.4)

ρout =
{

ρout(0), . . . , ρout(T−1)
}

. (3.5)

The position of the centre point is allowed to vary between frames. This is necessary

since the heart can change position during contraction and expansion.

Our segmentation process first determines a sequence of centre points, after which rel-

ative radial values are inferred. In the next section we turn our attention to finding suitable

centre points.
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3.2 Centre point estimation

Our model of the radial values requires that the centre points be positioned inside the

left ventricle near the middle of the endocardium. This allows the segmentation process

to restrict the spatial and temporal variability of the radii. In this section we describe a

semi-automated procedure to determine suitable centre points for successive frames after

a single centre point in the initial frame is provided by the user. This removes the need to

manually specify the centre point for all frames in a video sequence.

A number of heuristic techniques (e.g. [44,46]) are available for estimating centre points.

Most of these perform adequately when the papillary muscles are absent and there is high

contrast between the blood pool and the cardiac wall. This is generally the case for the first

few frames, but not at the end of systole (at approximately T/2) when the left ventricle’s

blood pool is at its smallest and sometimes disappears from view.

Online tracking techniques, such as those based on the Kalman filter [26], rely only on

information from previous frames to correctly identify the tracked object’s position in the

current frame. This can become problematic when the object becomes very small or even

disappears from view, degrading information used in tracking in later frames. If informa-

tion from all frames are available for tracking, i.e. in an offline setting, then information

from later frames can be used to mitigate these difficulties.

The procedure described below requires the user to provide the centre point c(0) of the

first frame, when the endocardium is clearly visible and the papillary muscles minimally

obstruct the inner contour. Centre points for the remaining frames are then automatically

derived through offline tracking. The procedure is therefore best described as being semi-

automated. The robustness of this semi-automated procedure against variations in the se-

lection of c (0) is discussed in Section 6.1.3. In short, the system is not particularly sensitive

to the choice of c(0) if placed near the centre of the endocardium.

Each video sequence from our dataset contains a single heart beat (cardiac cycle). Due

to its periodic nature, we therefore assume that the last frame has the same centre point as

the first, i.e. c(T−1) = c(0). This is not a severe restriction since the algorithm is robust

against variations in c(t), as demonstrated in Section 6.1.3.

To find centre points in the intermediate frames c (1) , . . . , c (T−2) we minimise a
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weighted inter-frame alignment error,

error (c) =
T−1

∑
t=1

∑
p

wc(t) (p) ·
(

Ic(t) (t, p)− Ic(t−1) (t− 1, p)
)2

, (3.6)

where Ic(t) (t) is the image I (t) centred at c(t) such that Ic(t) (t, p) = I (t, p− c (t)) and

zero when indexed out of bounds. Recall that p is an (x,y)-coordinate pair and I(t, p) is a

pixel in the frame at time t before a log-polar transform is applied.

The weight wc(t) (p) = e(−‖c(t)−p‖2/σ2) locally enhances the error around the current

frame’s centre point. The width σ is experimentally chosen from a training dataset so that

the inferred centre points closely resemble the mean of the ground truth inner contours.

For computational efficiency we only calculate values within a 2σ radius of c (t) as the

contribution becomes negligible further away.

The error in (3.6) is a non-linear function of the sequence of centre points but is effi-

ciently solved using an optimisation strategy such as dynamic programming. In addition,

in order to reduce computational effort we assume that the centre point translates less than

three pixels between successive frames. Backtracking is initiated at the centre of the last

frame c(T−1). In order to constrain c(0) to the value provided by the user, during dy-

namic programming, the cumulative cost function for the first frame is set to zero at c(0)

and one otherwise.

Since the calculation of the centre points is performed before and separately from the

calculation of the radial values, a faster heuristic method could be considered for the centre

points. However, we prefer to pose the centre point estimation problem as one that can

be solved with dynamic programming, and therefore within the same belief propagation

framework as used to infer the radial values as described in Chapter 4. This allows both

the centre point estimation and radial inference to be implemented using the same general

belief propagation software infrastructure. If required, the centre point estimates can easily

be refined after inference of the radial values. This, however, has not proven to be necessary

and is not implemented in this dissertation — the centre points are fixed after applying the

process described in this section.
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3.3 The CRF model

In this chapter we represent a temporal sequence of log-polar images as D = {D(t)}t=0,...,T−1

and, by assuming appropriately trained parameters, θ, we model the conditional probabil-

ity P (ρ|θ, D) of a segmentation ρ. This is done through a log-linear CRF,

P (ρ|θ, D) =
1

Z (θ, D)
exp (−E (ρ|θ, D)) . (3.7)

The energy E (ρ|θ, D) is defined as the weighted sum of local feature functions f , defined

over all cliques q ∈ Q in its graphical model,

E (ρ|θ, D) = ∑
q∈Q

θq fq

(
ρq, D

)
. (3.8)

In this formulation, smaller energies indicate better segmentations, while bad segmen-

tations are penalised with larger energies. The conditional notation of the energy function

is not strictly necessary, but emphasises that its associated probability and composing fea-

ture functions are discriminative in nature.

The partition function

Z (θ, D) = ∑
ρ

exp (−E (ρ|θ, D)) (3.9)

sums over all possible configurations of ρ, normalising the exponentiated energy into a

probability. Its calculation is intractable in general, but can be avoided during inference, as

discussed in Chapter 4.

There are no significant theoretical restrictions to the feature functions in a Random

Field (RF). Restrictions and the choices of feature functions are design choices aimed at

improving performance.

3.4 Feature functions

We restrict ourselves to positive feature functions f where small values are more desirable

(i.e. smaller values indicate “better” segmentations). Positive parameters, θ, determine the
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relative weights of the feature functions. The number of computations involved in calcu-

lating these feature functions grow exponentially with the number of dependent variables.

In order to minimise the computational cost, we therefore restrict ourselves to features that

couple at most two radial values in space or time.

Figure 3.3: A partial factor graph of the temporal and spatial relationships between radius
variables, ρ, in a single contour and rows in the log-polar transformed image, dn (t). Factor
labels and some variable labels are omitted for clarity.

The partial factor graph in Figure 3.3 illustrates the temporal and spatial relationships

between radius variables, ρ, in a single contour and rows in the log-polar transformed

image, dn (t). The spatially circular nature (i.e. there is a feature (or factor) connecting

ρ0 (t) and ρN−1 (t)) and the relationships between the inner and outer contours are omitted

for clarity.

We derive the feature functions from discriminative properties of human annotated

images as described below. Selection of the relative weights, θ, is discussed in Chapter 5.

3.4.1 Feature function based on edge classifiers

Consider a log-polar frame (such as in Figure 3.2 or Figure 3.4) and note that the inner

and outer contours tend to occur at positions that contain an edge. Although there exist a

number of edge detection algorithms, the selection of an appropriate technique is compli-
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cated by different edge behaviour at different parts of the contours and the presence of the

papillary muscles that can obscure the edge.

Since we are interested in specific types of edges, and annotated edges are available, it is

possible to custom-design an edge detector for this specific application. We therefore train

a simple artificial neural network, with two nodes in a hidden layer, to model the presence

of the cardiac edges. A window extracted from the training set is considered to contain an

edge if the centre of the window is no more than 2 log-radial units away from the ground

truth contour, otherwise it is considered a “non-edge” training example.

Figure 3.4: Window extracted in log-polar space and corresponding circular sector in un-
transformed image. The height of the window in these figures are set to eight angular units
for illustrative purposes.

More specifically, for a log-polar frame at time t, consider a window (e.g. in Figure 3.4)

of height 1 and width w = M
4 = 64 centred at ρ and in the radial direction, n. This window

is equivalent to a circular sector1 in the original image before the log-polar transform is ap-

plied. We refer to the pixel values in this window as the vector vρ = dn
(
t,
[
ρ− w

2 , . . . , ρ + w
2
])

.

A feature vector κ (v) is derived from the window and is described below.

The feature vector κ (v) consists of the concatenation of four expressions of the gradient

in the radial direction, ∂v
∂ρ , to discriminate between edges and non-edges,

κ (v) =
(

∂v
∂ρ

,
∣∣∣∣∂v

∂ρ

∣∣∣∣ , sign
(

∂v
∂ρ

)
,
[∣∣∣∣∂v

∂ρ

∣∣∣∣ > ε

])
. (3.10)

1Strictly speaking, this window is equivalent to the intersection of a “track” and a sector.
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The expression
[∣∣∣ ∂v

∂ρ

∣∣∣ > ε
]

is a binary value indicating the presence of a gradient, i.e.

equal to 1 if the edge magnitude is larger than ε and 0 otherwise.

From the short-axis view in Figures 1.4 and 3.4, it is apparent that the gradient sign on

the left and right sides of the outer contour’s edge differ, due to the intensity of the right

ventricle’s blood pool. We therefore train eight classifiers for different parts of the contour,

i.e. instead of training a single classifier over all angular directions (n = 0..N − 1), groups

of angles are treated separately (n = 0, . . . , 15; n = 16, . . . , 31 etc. ) and thus leading to

direction dependent classifiers. This allows the classifiers to exploit features that it might

find relevant in that direction. This is an important advantage over standard multi-purpose

edge detectors that, without customisation, would handle gradients in different parts of the

images, similarly.

The process is repeated for the classifiers of the inner contour’s edges since the endo-

cardium edge on the left and right sides also behave differently, due to the presence of the

papillary muscles mostly on one side (see Figure 1.5).

Heiberg [18] identifies the edges of the inner and outer contours as two classes: Concor-

dant, where edge gradients have a similar sign, and Discordant, areas where the edge gra-

dient signs differ. Accordingly, he explicitly includes the gradient sign for the inner contour

and ignores the sign for the outer. Because our edge model is trained on annotated ground

truth images, our classifier automatically differentiates between the signs when they are

relevant to edge detection. The nature of the edges are further explored in Appendix A.

To fit within the framework of energy minimisation the response of the neural network,

g0 (ρ, n), to an image window centred at (ρ, n), is transformed from an indicator/detection

function into a cost function by subtracting its output value from one, i.e. g1 (ρ, n) =

(1− g0 (ρ, n)). The minimum cost in the radial direction is subtracted to avoid nega-

tive feature values, g2 (ρ, n) = g1 (ρ, n) −minρ′ g1 (ρ
′, n), and is normalised by the sum,

g3 (ρ, n) = g2(ρ,n)
∑ρ′ g2(ρ′ ,n)

.

It should be noted that the typical neural network training techniques attempt to min-

imise a classification error. Recall, however, that we are not so much interested in the

classification of edges than we are in using the output of the feature function to penalise

non-contour positions, while at the same time penalising contour positions as little as pos-

sible. Ideally, we prefer a classifier that rejects very few possible edges, i.e. results in very
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few false negatives.

To mitigate this unintended penalisation, the outputs of the constructed features are

thus “smoothed” by applying a small minimum-filter (erosion) in the angular direction,

f (ρn) = min
n′=n−1,n,n+1

g3
(
ρ, n′

)
. (3.11)

This will cause an area to have a high valued feature function response (i.e. be penalised)

only if its neighbouring areas (in the angular direction) also have high feature responses.

We construct these networks for the inner and outer contour edges and thereby obtain

the features f in (ρin
n (t) , dn (t)

)
and f out (ρout

n (t) , dn (t)).

Figures 3.5a and 3.5b, respectively, show the resulting inner and outer feature responses

to the frame in Figure 3.2. The response is relatively low in the area of the ground truth, i.e.

more desirable segmentations generally have smaller feature values.

However, there are strong gradients at some non-contour positions and relatively weak

gradients at some contour positions, especially when papillary muscles are close to the

endocardium border. The resulting feature responses, on their own, are therefore unable to

adequately provide a good indication for the position of the inner and outer contours. It

should be emphasised that these response images have been obtained without taking into

account any temporal behaviour or continuity requirements. We now investigate how to

incorporate these properties into our model.

3.4.2 Spatial and temporal feature functions

We now proceed to introduce spatial continuity, as well as temporal information directly

into the model with the following feature functions,

fr (ρn(t), ρn−1(t)) =
(

ρn(t)− ρn−1(t)
M

)2

, (3.12)

ft (ρn(t), ρn (t−1)) =
(

ρn(t)− ρn (t−1)
M

)2

, (3.13)
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(a) Inner edge feature function response

(b) Outer edge feature function response

Figure 3.5: Inner and outer feature function responses to the image in Figure 3.2. The
ground truth contours are indicated with yellow lines.

28



were M is again the discretisation value, used here to scale the feature values to the same

order of magnitude as the features described previously2. Moreover, since direct inspection

of training data indicates that few contours violate the properties |ρn(t)− ρn(t− 1)| ≤ 24

and |ρn(t)− ρn−1(t)| ≤ 8, the search space can be significantly reduced by ignoring radial

pair values that do not conform. This is discussed in more detail in Section 4.1.

Contour growth during systole and shrinkage during diastole is penalised by assuming

that end-systole (maximum contraction) is reached at time tES and applying the feature

f
′
t (ρn(t), ρn (t−1)) =


[ρn (t−1) < ρn(t)] if t < tES

[ρn(t) < ρn (t−1)] otherwise.
(3.14)

For simplicity, we have chosen a fixed tES = 8 from inspection of the training annota-

tions. The correct selection of tES is sensitive to patient pathology. Enforcing a shrinkage

followed by a growth in radius values without choosing a fixed tES can be done with a sec-

ond order temporal model, but would add to the computational complexity. Alternatively,

detecting when the optical flow in the images are suspended and reversed, might provide

enough information to choose a better end-systole — a topic that might be fruitfully inves-

tigated in a future study.

Again, these temporal features are constructed separately for both the inner and outer

contours.

Additionally, we assume that the “angular gradient” of the cardiac wall just inside the

outer contour remains small over time and space through the feature functions,

f
′′
t
(
ρout

n (t), ρout
n (t−1)

)
=
∣∣dn

(
t, ρout

n (t)− ερ

)
− dn

(
t−1, ρout

n (t−1)− ερ

)∣∣ (3.15)

and

f
′′
r
(
ρout

n (t) , ρout
n−1 (t)

)
=
∣∣dn

(
t, ρout

n (t)− ερ

)
− dn

(
t, ρout

n−1 (t)− ερ

)∣∣ (3.16)

where ερ = 2 is an experimentally chosen radial offset. Similar feature functions are con-

structed for the intensity just outside the inner contour.

2Strictly speaking, scaling is not necessary since unscaled values can be compensated for by the corresponding
parameters. In practice, however, it is beneficial to scale the values beforehand e.g. if regularisation is required.
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3.4.3 Inner-outer radius feature functions

Information on the cardiac structure can further be exploited by using the relationship be-

tween the inner and outer contours. Specifically, the ratio between the inner and outer

radii, rin
n (t)/rout

n (t), and thus the difference in log-space,
∣∣ρout

n (t)− ρin
n (t)

∣∣, is found to con-

tain information on the temporal behaviour. This can be seen in Figure 3.6. This ratio is

related to the wall thickness but is invariant to scaling, which can occur due to differences

in patient physiology and MRI magnifications.

Figure 3.6: Histogram of the ratio between the inner and outer radii, rin
n (t)/rout

n (t), against
time, generated from a training dataset.

A probability distribution of the log-radial distance between the inner and outer con-

tours, P
(
ρout

n (t)− ρin
n (t)

)
, is derived from annotations in a training dataset and used to

construct the feature function (see Figure 3.7),

f cross
1

(
ρin

n (t) , ρout
n (t)

)
= − log P

(
ρout

n (t)− ρin
n (t)

)
. (3.17)

The relative homogeneity of the cardiac wall can also be exploited by minimising the
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Figure 3.7: Response of feature, f cross
1 : difference between inner and outer log radii,∣∣ρout

n (t)− ρin
n (t)

∣∣ against time.

variance in intensity of the area between the inner and outer contours with

f cross
2

(
ρin

n (t) , ρout
n (t) , dn (t)

)
=

1
Wn

ρout
n (t)

∑
ρ=ρin

n (t)

(dn (t, ρ)− µn)
2 . (3.18)

Here the mean wall colour µn is given by

µn =
1

Wn

ρout
n (t)

∑
ρ=ρin

n (t)

dn (t, ρ) , (3.19)

where the wall width is

Wn = ρout
n (t)− ρin

n (t) . (3.20)

From inspections of the training dataset, we enforce a minimum cardiac wall thickness

of 10 log-radial units, i.e. ρin
n (t) + 10 ≤ ρout

n (t). This is used during belief propagation in

Chapter 4 to enforce a realistic minimum cardiac wall thickness and to reduce the number

of calculations required.
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3.5 Summary

We derive discriminative features from a training dataset, describing local image properties

of training annotations. We also extract spatio-temporal features from annotations. To

model the conditional probability of segmentations these feature functions are weighted

by parameters and combined in a CRF as in (3.8). The selection of these parameters is

discussed in Chapter 5.

Of interest is the generative MRF model designed by Cordero-Grande et al. [11] which

relies on modelling the generative likelihood of an image conditioned on a segmentation,

i.e. P (Image|Segmentation). To construct a model of the images that is mathematically

tractable, the modelled distribution of the images is simplified by considering reduced im-

age properties, such as a homogeneous myocardium, and through strict assumptions of

conditional independence and distribution types. This can be a challenging process since

these simplifications could potentially remove image properties that are important to seg-

mentation quality.

In contrast, our approach directly models the conditional probability of the segmen-

tations given an image, P (Segmentation|Image) and is thus discriminative in nature. A

model of the images is therefore unnecessary since we relate the variables representing the

observed image and segmentations with the discriminative edge detector discussed above.
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Chapter 4

Segmentation

We now turn our attention to inferring a segmentation when given a new video sequence

and suitably trained1 parameters, θ. The most probable segmentation under our probabil-

ity model is given by

ρ? = arg max
ρ

P (ρ|θ, D) . (4.1)

This is equivalent to searching for the segmentation with the smallest energy,

ρ? = arg min
ρ

E (ρ|θ, D) , (4.2)

since the normalising partition function Z (θ, D) does not depend on the segmentation ρ.

As defined in (3.8), this energy is a weighted sum of the feature functions

E (ρ|θ, D) = ∑
q∈Q

θq fq

(
ρq, D

)
. (4.3)

A brute-force approach to determine the minimising configuration would evaluate the en-

ergy of all possible configurations of ρ. However, with M2NT ≈ 1012330 possibilities this

approach is intractable. In this chapter we describe belief propagation, an exact and efficient

approach to calculating the minimising configuration in simple graphs. Its approximate

extension to general graphs, i.e. loopy belief propagation, is also discussed as it relates to our

application.

1Appropriate parameters are estimated in Chapter 5.

33



In this chapter, as the parameters θ are assumed to be known and paired with an as-

sociated feature, we simplify the notation by dropping reference to the parameters, i.e. we

consider the energy,

E (ρ|θ, D) = ∑
q∈Q

Fq

(
ρq, D

)
, (4.4)

where Fq

(
ρq, D

)
= θq fq

(
ρq, D

)
is referred to as a factor.

4.1 Belief propagation

Belief propagation [42] is an effective technique for inferring values for the latent variables

in a graphical model. Messages representing cumulative belief are passed between vari-

ables and updated according to a specific order or schedule. Backtracking is then used to

recover a solution. For a tutorial on general belief propagation, see e.g. [28]. We briefly

describe belief propagation using a simplification of our model.

Consider the simple function minimisation,

min
ρ

E(ρ) = min
ρN−1

. . . min
ρ0

(
F (ρN−1, ρN−2) + . . . + F (ρ1, ρ0)

)
, (4.5)

where the dependencies of the N bivariate functions form a “chain” over N variables.

Figure 4.1: Factor graph of a “chain” and propagated messages.

This chain is illustrated by the factor graph in Figure 4.1. As mentioned in Chapter 2,

factor graphs [28] are bipartite graphs that describe the dependencies of functions (repre-

sented by square nodes) on a shared set of variables (circular nodes).

When each variable ρn can take on M values, a direct minimisation over all configura-

tions of ρ0 . . . ρN−1 requires O
(

MN) operations and is therefore intractable for non-trivial

applications. As this minimisation is fundamental to inferring optimal segmentation in our

application, it is necessary to significantly reduce the number of calculations required.

The distributive law [1] is used to organise these calculations into a more manageable

form. Specifically, by using the distributive nature of minimisation over summation, and
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conditional independence of all the terms but the last to ρ0, we can factorise (4.5) to

min
ρ

E(ρ) = min
ρN−1

. . . min
ρ1

(
F (ρN−1, ρN−2) + . . . + F (ρ2, ρ1) + min

ρ0
F (ρ1, ρ0)

)
. (4.6)

Repeating the process for the variables ρ1 . . . ρN−2, the following recursive expression is

obtained:

min
ρ

E(ρ) = min
ρN−1

(
mN−2→N−1 (ρN−1)

)
(4.7)

where the “message” to ρn+1 is defined as

mn→n+1 (ρn+1) = min
ρn

(
F (ρn, ρn+1) + mn−1→n (ρn)

)
(4.8)

and terminates with the message to the first variable m−1→0 (ρ0) = 0.

Starting with the calculation of m0,1 (ρ1) and using (or propagating) its result to calculate

m1,2 (ρ2), etc., the minimum over all values of ρ requires only O
(

NM2) operations.

To find the configuration ρ?0 . . . ρ?N−1 that minimises the function, the minimising config-

urations of the direct “parents” are also stored during propagation, i.e.

parentn→n+1 (ρn+1) = arg min
ρn

(
F (ρn, ρn+1) + mn−1→n (ρn)

)
. (4.9)

After propagation these values are used to “backtrack” from the end of the chain to

recover the complete minimising configuration through

ρ?N−1 = arg min
ρN−1

mN−2→N−1 (ρN−1) , (4.10)

and

ρ?n = parentn→n+1
(
ρ?n+1

)
. (4.11)

When applied to acyclic chains or tree structures, this belief propagation and backtrack-

ing is a form of dynamic programming, equivalent to the Viterbi algorithm [55], and results

in a unique exact solution.

Since each message is a function of the M discrete values of ρn, we can represent each

message as a vector of M “belief values” together with a vector containing corresponding
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“minimising parent” identity values for each of the M values.

As mentioned above, the calculation of messages is quadratic in the variable cardinal-

ity, M. If it is known that certain combinations of ρn and ρn+1 typically have very high

function values, e.g. are unlikely to occur together in a good segmentation, then a tech-

nique similar to a beam search can be applied. For example, if the factor function sufficiently

penalises large differences between successive variables, e.g. F (ρn, ρn+1) ∝ (ρn − ρn+1)
2,

then in the minimisation in (4.8) only values for ρn where |ρn − ρn+1| < εM need to be

considered. Here εM denotes the range which is application and message type dependent.

This range of likely values can be selected based on inspection of the factor function and

training examples. Since these unlikely combinations of radial values can be safely ignored

in the calculation of a message the computational complexity can be reduced to O (NMεM)

operations, which is significant if M is large.

4.2 Loopy belief propagation

The factors for the segmentation problem in this study do not form simple linear chains

(see Figure 3.3), or a tree structure, as is required by belief propagation. Not only are the

first and last radius variables in each contour “connected” (i.e. there is a feature function

f (ρN−1, ρ0)), there also exist many loops due to the presence of feature functions connecting

variables over time as well as between the inner and outer contour variables.

It is, however, rather straightforward (see [27] for examples) to iteratively apply belief

propagation of these same belief messages even in the presence of loops in a graph, result-

ing in loopy belief propagation algorithms [43].

We will now briefly state the loopy belief propagation algorithm as applied to general

graphs. Let variable nodes be represented by v and factor nodes by u. Messages are sent

from variable nodes to factor nodes, mv→u, and by factor nodes to variable nodes, mu→v.

On min-sum problems, the message sent by a variable node to a factor node is propor-

tional to the sum of the incoming messages to that node,

mv→u (ρv) ∝ ∑
u′∈N(v)\{u}

mu′→v (ρv) , (4.12)
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where N(v) \ {u} are the factor nodes connected to that variable, excluding the target fac-

tor.

The message that is sent from a factor node to a variable node is proportional to a

minimisation over the sum of the incoming messages and the factor’s function,

mu→v (ρv) ∝ min
ρ′u :ρ′v=ρv

F
(
ρ′u
)
+ ∑

v∗∈N(u)\{v}
mv∗→u

(
ρ′v∗
) , (4.13)

where N(u) \ {v} is the variable nodes connected to that factor, excluding the variable to

which the message is sent.

The message described by (4.13) reduces to (4.8) when a variable has only a single parent

factor. When applied to chain and tree structured graphs, this algorithm is equivalent to

the dynamic programming discussed in the previous section. The proportionality is due to

the omission of a normalising constant.

Our implementation stores only the messages emitted from factor nodes since messages

sent from variable nodes can be discarded after being used to calculate the former. Mes-

sages that are passed from a factor to a variable node, ρn(t), can be grouped into one of six

types according to their “direction”:

1. mR (n, t): Message sent “rightwards” from the factor connecting variables ρn−1(t)

and ρn(t).

2. mL (n, t): Message sent “leftwards” from the factor connecting variables ρn+1(t) and

ρn(t).

3. mU (n, t): Message sent “upwards” from the factor connecting variables ρn (t− 1)

and ρn(t).

4. mD (n, t): Message sent “downwards” from the factor connecting variables ρn (t + 1)

and ρn(t).

5. mI (n, t): Message sent “inwards” from the factor connecting variables ρout
n (t) and

ρin
n (t).

6. mO (n, t): Message sent “outwards” from the factor connecting variables ρin
n (t) and

ρout
n (t).
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Figure 4.2: Messages propagated in a partial factor graph to construct mR(n, t). The in-
wards message from the outer contour, mI (n− 1, t) is not shown.

As an example, consider min
R (n, t), the rightwards message received by the variable

ρin
n (t) from the feature connecting it to ρin

n−1 (t), as shown in Figure 4.2,

min
R (n, t) = min

ρn−1(t)

(
F
(

ρin
n−1 (t) , dn−1 (t)

)
+Fr

(
ρin

n (t) , ρin
n−1 (t)

)
+ F

′′
r

(
ρin

n (t) , ρin
n−1 (t)

)
+min

R (n− 1, t) + mI (n− 1, t)

+min
U (n− 1, t) + min

D (n− 1, t)

)
− Zn,t. (4.14)

The factors Fr = θr fr and F
′′
r = θ

′′
r f
′′
r in (4.14) are the local functions that restrict the vari-

ations of radii, as discussed in Section 3.4.2, and F is the function derived from the edge

classifier.

The message that is sent from a factor connected to an observed variable, e.g. the ob-

served image in the radial direction dn−1(t), is a function of only the radius, F
(
ρin

n−1 (t) , dn−1 (t)
)
,

i.e. the factor based on the edge classifier, since the image is known during segmentation.

The normalisation value Zn,t ensures that minρn(t) mR (n, t) = 0. Due to the fact that fea-

tures in an undirected graphical model, such as the CRF, are allowed to take on arbitrary

values, propagated messages do not necessarily represent marginal probabilities, as is the

case in directed graphs. If loopy belief propagation is applied without message normali-
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sation, numerical overflow can occur after only a few iterations. We therefore normalise

our messages by subtracting2 the smallest value in each message before it is propagated.

This ensures that the minimum value in each message is zero. For a “max-product” set-

ting this is equivalent to normalising each message so that the largest value in the message

is one. We have applied message normalisation and have not encountered any numeri-

cal overflow or underflow issues. For a discussion on the role of normalisation in belief

propagation, see [35].

As mentioned in Section 3.4.2, to reduce computational cost, minimisation in (4.14) is

only calculated over a sub range of ρn−1(t) where |ρn(t)− ρn−1(t)| ≤ 8, as larger radial

differences are unlikely to occur.

For completeness we show the other propagated messages. Messages sent to the inner

contour variables are

min
L (n, t) = min

ρn+1(t)

(
F
(

ρin
n+1 (t) , dn+1 (t)

)
+Fr

(
ρin

n+1 (t) , ρin (t)
)
+ F

′′
r

(
ρin

n+1 (t) , ρin (t)
)

+min
L (n + 1, t) + mI (n + 1, t)

+min
U (n + 1, t) + min

D (n + 1, t)

)
− Zn,t, (4.15)

min
U (n, t) = min

ρn(t−1)

(
F
(

ρin
n (t− 1) , dn (t− 1)

)
+Ft

(
ρin

n (t) , ρin
n (t− 1)

)
+ F

′
t

(
ρin

n (t) , ρin
n (t− 1)

)
+F

′′
t

(
ρin

n (t) , ρin
n (t− 1) , dn (t)

)
+min

R (n, t− 1) + mI (n, t− 1)

+min
U (n, t− 1) + min

D (n, t− 1)

)
− Zn,t (4.16)

2We are working in the log domain.
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and

min
D (n, t) = min

ρn(t+1)

(
F
(

ρin
n (t + 1) , dn (t + 1)

)
+Ft

(
ρin

n (t + 1) , ρin
n (t)

)
+ F

′
t

(
ρin

n (t + 1) , ρin
n (t)

)
+F

′′
t

(
ρin

n (t + 1) , ρin
n (t) , dn (t)

)
+min

R (n, t + 1) + mI (n, t + 1)

+min
U (n, t + 1) + min

D (n, t + 1)

)
− Zn,t. (4.17)

The messages to the outer contour variables, mout
R (n, t), mout

L (n, t), min
U (n, t), min

D (n, t)

are similar, except for replacing the inwards messages mI (· · · ) with outwards messages

mO (· · · ). The outwards messages, sent from the inner contour variables to the outer, are

defined as

mO (n, t) = min
ρn(t−1)

(
F
(

ρin
n (t) , dn (t)

)
+Fcross

1

(
ρin

n (t) , ρout
n (t)

)
+Fcross

2

(
ρin

n (t) , ρout
n (t) , dn (t)

)
+min

R (n, t) + min
L (n, t)

+min
U (n, t) + min

D (n, t)

)
− Zn,t (4.18)

and similarly the inwards messages mI (n, t), with the “in” and “out” labels exchanged.

4.3 Message schedule

In acyclic chains and trees, the order that messages are propagated is clear, i.e. messages

are calculated sequentially starting from the “leaf” nodes. However, in graphs containing

loops some kind of propagation schedule is required.

In a parallel propagation schedule all messages are updated simultaneously after each

iteration. We have found that, in a parallel propagation schedule, the effects from a feature

function propagate relatively slowly through the graphical model. A similar observation

is made by Goldberger and Kfir [17]. For this reason we choose a sequential propagation
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schedule which, in our experience, allows for faster convergence.

We briefly discuss some issues related to the convergence of belief propagation and its

effect on the choice of an appropriate propagation schedule and backtracking order.

When applied to graphs with a single loop, belief propagation converges to a stable

fixed point (which is globally optimal) or oscillates periodically [58]. Convergence and

global optimality for graphs with as many loops as ours is, however, not guaranteed [43].

Figure 4.3: Example of a non-continuous inner contour.

Through experimentation we find that the inferred contours are sensitive to the order

of message propagation and backtracking. Because a global optimum is not guaranteed we

risk obtaining contours that deviate from desired behaviour, such as contours with sudden

“jumps” (e.g. Figure 4.3) or inner-outer ratios that are inconsistent with the training data.

Before further discussing the optimality of belief propagation, let us consider the opti-

mality of using an inference technique based on a basic Gibbs sampler to infer segmentation

values, i.e. taking each radial variable in turn and selecting its optimal value conditioned

on the rest. On convergence, no assignment to an individual radial variable thus can fur-

ther improve upon this result. The neighbourhood within which this algorithm is optimal

is therefore a single variable. To improve upon this local minimum, larger neighbourhoods

need to be considered.

Weiss and Freeman [58] describe the Single Loops and Trees (SLT) neighbourhood within

which the result of a loopy belief propagation algorithm is optimal. The SLT neighbour-

hood of a solution is defined as taking a subset of the variables that form disconnected

combinations of trees and single loops, in the graphical model, and assigning them arbi-
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trary values while keeping the other variables fixed. It is guaranteed that no assignment to

these variables will yield better results, i.e. on convergence,

E (ρ?|θ, D) ≤ E (SLT (ρ?) |θ, D) . (4.19)

The SLT neighbourhood is thus significantly larger than that of the Gibbs sampler and

loopy belief propagation is thus much less likely to yield locally optimal configurations.

The nature of the SLT neighbourhood is utilised to inform us on the order of propaga-

tion and backtracking. Since we can only guarantee optimality within “tree” and “loop”

subsets, we implicitly select the subsets, through propagation schedule and backtracking

order, that encapsulate the “most important” factors and eliminate potentially problematic

configurations.

We are primarily interested in deriving contours that are almost continuous in the log-

polar space. We therefore select a propagation schedule and backtracking order that places

more emphasis on contour continuity (i.e. the relationship between ρn and ρn−1) than the

other radial relationships.

Specifically, for variables representing the inner contour, messages are first propagated

in an angular direction (n = 0, . . . , N−1) and reversed (n = N−1, . . . , 0) before being prop-

agated to the next temporal frame (t = 0, . . . , T−1) and back (t = T−1, . . . , 0). Similar steps

are then repeated for the outer contour, taking into account messages passed from the inner

contour.

The same reasoning is used in the selection of a backtracking order, i.e. we backtrack

over all nodes in the inner and outer contours independently.

It is found that such a propagation schedule and backtracking order increases the prob-

ability that the inferred inner and outer contours in a single image, form continuous loops.

We have not observed divergence or significant oscillation between configurations in our

application.
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4.4 Implementation

The majority of the software is implemented in the Python programming language with

belief propagation implemented in C. Cordero-Grande et al. [11] reports using an MRF

to segment a single 4D video sequence in approximately 56 minutes on a single 800MHz

processor with 4MB cache.

For a similar number of images (12 slice positions with 20 frames each) on a single core

of a 3400MHz processor with 8MB cache we can report a radial segmentation runtime of

approximately 2 minutes. Since the slices are independent in our model, segmentation can

easily be distributed in a multi-core environment. With approximately 12 slices per subject

this can reduce the segmentation time by an order of magnitude for a single subject and

potentially more if multiple subjects are to be analysed.

We have not included the time to estimate the centre point positions (approximately an

additional minute for each 20 frame video sequence) as it can be replaced by a faster heuris-

tic technique, such as the one briefly discussed in Section 3.2. Additionally, the time taken

to derive the edge-classification features is negligible if a fast implementation is used. Such

an implementation could take into account the equivalences between the “sliding window”

classification and cross-correlation of the log-polar image with appropriate weights.

Our radial inference technique, which uses belief propagation, is thus approximately six

times faster than [11] (after adjusting for our approximately four times faster processor),

which can be attributed to their use of a Gibbs sampler during inference. Note also that

the number of radial points we use to represent a contour and its radial discretisation are

128 and 256, respectively. This is significantly larger than the values of 7 and 31 used by

Cordero-Grande et al., especially when comparing the size of the resulting configuration

space.

After profiling the time complexity of our implementation, it was determined that a

large part of belief propagation computational time is spent on calculating the messages

that are passed between the inner and outer contours. This is to be expected as the εM is

relatively large for these messages, i.e only a small number of “parent values” are skipped

during calculation. This is due to the relatively wide range of wall widths possible at e.g.

maximum contraction, as can be observed in Figure 3.7 at t = 8. It should be possible to
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carefully select different εM for different frames in the cycle, however this is not done in

our implementation.

4.5 Summary

To summarise, in this chapter we apply a loopy belief propagation algorithm with sequen-

tial message passing to derive a segmentation for a new video. We briefly discuss the mes-

sages and their normalisation together with the approximate nature of the algorithm. We

remark on properties of the implementation and the speed of inference which is sufficient

for our application.
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Chapter 5

Parameter estimation

In this chapter we address the selection of CRF parameters, θ?, which are used to weigh

the effects of the feature functions relative to one another.

We discuss some of the disadvantages of a Maximum Likelihood formulation for pa-

rameter estimation and consider two black-box approaches to directly minimise the seg-

mentation error: one in which the gradient is estimated numerically and another which is

a gradient free technique.

We also discuss two loss functions: one used during training in this chapter and another

used during evaluation in Chapter 6.

5.1 Maximum likelihood estimation

Before performing segmentation of an observed video sequence, as described in Chapter 4,

suitable CRF model parameters, θ?, are needed. A popular machine learning approach is

to use parameters that “best explain the data”, i.e. maximise the likelihood of the training

annotations. For our model this is expressed as

θ? = arg max
θ

∏
i

P
(

ρ(i)|D(i), θ
)

, (5.1)

where D(i) is a video sequence from a training dataset and ρ(i) is its human annotated

segmentation. An important property of this maximum likelihood formulation (see e.g. [5])
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is that it leads to an objective function that is convex with respect to its parameters (see e.g.

[27]). This convexity is highly desirable as many optimisation techniques are guaranteed

to converge to a unique global optimum. Often an iterative gradient-based method is used

to search for this optimum.

Calculating the likelihood in (5.1) (and its derivatives) for a specific θ, requires evalu-

ation of the partition function (and its moments). The derivative of the partition function

Z
(

θ, D(i)
)

with respect to a specific parameter θq is given by

∂Z
(

θ, D(i)
)

∂θq
=−∑

ρ

exp

−∑
q′

θq′ fq′
(

ρq′ , D(i)
)· fq

(
ρq, D(i)

) . (5.2)

Here the sum is again over all configurations of ρ which requires O
(

M2NT) operations for

general graphs. This is one of the significant challenges in applying CRFs in practice since

the calculation quickly becomes intractable.

Attempts have been made by others [4,52] to approximate the partition function. These

result in approximate distributions such as the pseudolikelihood. Application of these tech-

niques to our distribution, P, as described in Section 3.3, would therefore result in an ap-

proximate distribution P̃.

Apart from these computational difficulties, recall that loopy belief propagation yields

an approximate minimising configuration to our distribution P. Equivalently, this can be

interpreted as an exact minimising configuration to a related, hypothetical distribution, Q.

The relationship between P and Q is discussed by [58] and in [27].

The effect of using parameters that maximise the likelihood of the training data under

P̃, to infer values from the distribution Q is unclear. Since we are primarily interested in ob-

taining parameters that yield good segmentations under inference and less with estimating

the “true” model distribution, we consider alternatives that avoid calculating the partition

function.

5.2 The loss functions

Before continuing, we address the topic of the “loss function” or metrics used to compare

inferred segmentations from our model to the human annotated ground truth.
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A number of error metrics are described in the literature (see e.g. [3, 10, 38, 46]). Here

we briefly discuss two that focus on the intersecting area of two contours and the distance

between points on the contours.

Figure 5.1: Illustration of the landmark distance of a single point and the Dice similarity of
two areas.

5.2.1 Landmark distance

The landmark distance [3] is the average of the shortest distance between each point on the

ground truth contour, A, and the inferred contour, B, i.e.

elandmark (A, B) =
1
N

N−1

∑
n=0

min
n′=0..N′−1

‖an − bn′‖ , (5.3)

where an and bn′ are points on the two contours and N′ is the number of points in contour

B. To minimise the effect of discretisation, points on contour B are linearly interpolated, so

that N′ = 1000. See Figure 5.1 for an illustration.

Our experiments indicate that contours inferred by minimising this distance, tend to be

jagged. This could be caused by the asymmetry of the landmark distance metric. More

specifically, elandmark (A, B) 6= elandmark (B, A), which allows the inferred contour to vary

wildly while still maintaining small minimum distances, as long as there are short distances

from each of the points on the ground truth. For this reason we construct a symmetric

distance through the average of the “ground truth to inferred” distance and the “inferred

to ground truth” distance, i.e.

e′landmark (A, B) =
elandmark (A, B) + elandmark (B, A)

2
. (5.4)
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This symmetric landmark distance is used during the parameter estimation stage. In

order to obtain a fair comparison of our results with that of Andreopoulos [3], we use the

asymmetric landmark distance during evaluation in Section 6.1.

It is also common to convert these distances from pixels into millimetres using a con-

version factor that is determined during the MRI acquisition process and provided with

the dataset. These conversion factors are dependent on the level of magnification used and

are, in part, influenced by the operator’s protocol and the size of the heart. The human

heart differs significantly in size between subjects as it is dependent on properties such as

age, sex, height and weight [40]. While a conversion to millimetres thus aids in a medically

intuitive interpretation, it also results in some images being arbitrarily penalised.

In our opinion, measurements of segmentation accuracy should thus be measured in

pixels or dimensionless quantities (e.g. a percentage) as is common in non-medical image

segmentation literature.

We therefore use a single shared conversion factor for all images during training and

evaluation to allow an intuitive medical interpretation. This shared conversion factor is

equal to the mean of the conversion factors of all annotated frames in the dataset.

Note that the size of the landmark distance does not have an upper bound and can thus

significantly influence results if outliers exist in the training or evaluation set.

5.2.2 Dice error metric

The Dice coefficient metric function [12], sdice, is a measure of the amount of overlap between

the area inside an inferred contour and the ground truth contour (see Figure 5.1):

sdice (A, B) =
2 ‖A ∩ B‖
‖A‖+ ‖B‖ . (5.5)

The Dice error, edice = 1− sdice, is therefore the amount of non-overlap of two contours.

For ease of implementation, we estimate the areas inside the contours (and their intersec-

tion) by the number of pixels inside these areas, as drawn on the original untransformed

images.

The average of the Dice errors of the inner and outer contours is used as the Dice error

of a single image’s segmentation. The Dice error of a sequence is defined as the average of
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the Dice errors of the individual image segmentations.

As the Dice error lies between zero and one, the effect of outlier segmentation errors is

mitigated. For this reason we use the Dice error to analyse the general behaviour over time

and at different slice positions.

The Dice error is, however, not very sensitive to minor variations in the contours being

compared. This is a disadvantage if close structural similarity is sought, and the Dice error

is therefore not used during parameter estimation.

5.3 Black box parameter estimation

Consider a video sequence, D(i), from a training dataset and its human annotated segmen-

tation, ρ(i). Fundamentally, we are interested in obtaining the parameters θ? that would

lead to a segmentation, ρ?(i), of the sequence, that does not significantly differ from the

annotated segmentation, ρ(i).

Moreover, we wish to find parameters, θ? = arg minθ J (θ), that minimises an objective

function representing the average error over the entire training dataset

J (θ) = ∑
i

e′landmark

(
ρ(i), ρ?(i)

)
. (5.6)

Here the inferred segmentation of a video sequence (from belief propagation) is

ρ?(i) = arg max
ρ

Q
(

ρ|θ, D(i)
)

. (5.7)

The function e′landmark is the symmetric landmark distance between the ground-truth and

the inferred segmentations.

This black-box approach does not contain information on the partition function, due to

the fact that (5.7) can be inferred without its calculation, as discussed in Chapter 4. How-

ever, without an explicit analytical expression for the gradient, optimisation methods need

to either approximate the derivative numerically or somehow avoid its calculation. These

are discussed in Section 5.3.1 and 5.3.2, respectively.

Although each evaluation of the objective function requires re-segmentation of all the

video sequences in the training set, the calculation of their centre points (and edge fea-
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tures) are independent of the CRF parameters and can be re-used to reduce the evaluation

time. This is a noteworthy advantage of estimating the centre points separately from the

segmentation.

After distributing the segmentation of our training set across our multi-core environ-

ment, each objective function evaluation takes approximately 30 seconds to complete. We

are therefore interested in convergence in relatively few iterations.

We investigate two popular optimisation techniques: BFGS with a numerical gradient

approximation and the gradient-free Powell’s method.

(a) BFGS (b) Powell’s method

Figure 5.2: Objective function evaluations (green points) against iteration. The blue line
indicates a lower bound, i.e. the best value encountered up to this iteration. The vertical
bars indicate iterations of decreasing error.

5.3.1 Gradient approximation method

We investigate the application of the limited memory Broyden–Fletcher–Goldfarb–Shanno

(BFGS) method (see e.g. [39]) as implemented in SciPy’s optimisation library [24]. BFGS

and related techniques generally perform well, even for the optimisation of non-smooth

objective functions [30, 50].

To constrain the parameters, θ, as they are passed to the objective function, to strictly

positive values, the parameters are transformed before function evaluation, i.e.

J′ (w) = J (θ = exp (w)) , (5.8)
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allowing the parameters w, as operated on by the BFGS optimiser, to take on both positive

and negative values.

BFGS requires access to the gradient of the objective function, which we approximate

numerically through a finite difference

∂J′ (w)

∂wd
≈ J′ (w + ∆wd)− J′ (w)

‖∆wd‖
, (5.9)

where ‖∆wd‖ = log (1.01) is a small delta in a base direction. Our choice of delta thus

evaluates each parameter direction with a change of 1% in the original parameter space.

We observe convergence after approximately 90 function evaluations (see Figure 5.2a).

5.3.2 Gradient-free method

There exist a number of techniques designed to minimise an objective function without

explicitly calculating its gradient. For a review of these algorithms and implementations

see [47]. Many of these gradient-free techniques are designed to work efficiently in rela-

tively low dimensional spaces (i.e. less than 20). Fortunately, our objective function has

only 16 parameters, making the application of these methods feasible.

We use Powell’s conjugate direction method [45] to search for suitable parameters with-

out calculating a gradient. During each iteration, Powell’s method successively calculates

bidirectional line searches along directions contained in a list. The list of directions is ini-

tialised as the orthogonal bases. After each iteration, the resultant direction of improve-

ment replaces the most correlated direction in the list.

The goal behind Powell’s method is to update the directions in which line searches

are done, such that they are aligned with the most promising direction, and thus avoid

“zigzagging” towards an optimum. We use the SciPy implementation [24], based on Brent’s

method [6] for line searches where a bracketing interval of plausible values for the mini-

mum in a direction is gradually refined.

To constrain parameters to strictly positive values, the exponent of the parameters is

used during function evaluation, similar to Section 5.3.1.

Powell’s method is known to converge for quadratic and strictly convex objective func-

tions (see e.g. [60]), which our objective function is not. We have, however, observed good
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behaviour for our application and briefly investigate the nature of the objective function

in the next section. We observe convergence after approximately 300 function evaluations

(see Figure 5.2b).

5.3.3 Convexity

Many optimisation techniques converge to local optima or stationary points. If the objec-

tive function is convex then this point will be a global optimum. This is not often the case

and if multiple local optima are present, special measures are needed in order to ensure a

global optimum. In many cases this is too expensive and one has to settle for a good, if not

global, optimum.

An analysis of the convexity of our objective function is complicated by the absence of

an analytical gradient. A cursory numerical inspection of the objective function (see Figure

5.3) provides us with some information on its behaviour.

The objective function is evaluated at different positions, J
(
θ′
)
, in each of the base di-

mensions, d, by multiplicatively scaling (to ensure parameters are positive) the obtained

optimal parameters θ?, i.e.

J
(
θ′
)
= J (θ? · exp (λded)) . (5.10)

This “line scan” in each of the dimensions illustrates how the objective function changes

as each parameter is varied. Noting that the sign of the objective function’s gradient

changes more than once and is zero over multiple values, it is clear that the objective func-

tion is not convex.

This can be understood by considering the segmentation of a single video sequence

after a very slight change in the parameters. If the change is small enough, it is likely that it

will have no effect on the results of the inference process, due to the “arg max” in (5.7) and

finite discrete values possible for ρ. This will result in plateaus in the objective function

which can cause problems for techniques that rely on an equivalence between stationary

points and a global minimum.

The segmentation of multiple video sequences influence these plateaus, but does not

eliminate the problem, i.e., the objective function remains non-convex.
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5.4 Remarks

For our objective function, BFGS reaches its optimum in less function evaluations than

Powell’s method. Powell’s method, however, reaches a better optimum if allowed to run

for more iterations. The numerical estimate of the gradient, as used by BFGS, is problem-

atic. It is possible to choose a delta, ‖∆wd‖, that is too small since the evaluated objective

function does not change under very small variations in parameters. A sufficiently large

delta causes BFGS to initially advance rapidly towards a good optimum, but then to not

improve due to the rough estimate of the gradient.

Early experiments suggest that searching with BFGS for a few iterations, to quickly find

an approximate good region, followed by Powell’s method, shortens the total number of

function evaluations required to reach the minimum yielded by Powell’s method alone.

Searching with Powell’s method followed by BFGS does not improve results.

Due to the relatively low dimensionality of the parameter search space (16 dimensions)

and the informative nature of each annotated video sequence we have not encountered

problems with data scarcity. It is, however, advisable that the training set contains a suffi-

cient number of video sequences in which the papillary muscles obscure the endocardium

border.

The 300 iterations of Powell’s method takes approximately 2 hours on our hardware

(3400MHz processor with 8MB cache) if distributed across multiple processors.

For other approaches that focus on directly minimising a loss function and integration

of inference and training see e.g. [57]. Additionally, see [15] for different discriminative

training techniques of max-sum classifiers.
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(a) Single video sequence

(b) Multiple video sequences

Figure 5.3: Line scan of the objective function, illustrating local minima. Red areas repre-
sent negative gradients and blue, positive.
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Chapter 6

Results and discussion

In this chapter we analyse the segmentations produced by our process and compare them

to those of a few existing techniques. Since it is difficult to illustrate video sequences in a

manuscript like this, the reader is advised to view the video available at our website1 and

the 3D image included in Appendix C.

Some annotated cardiac MRI datasets are publicly available, e.g. [3, 38, 46], but have

not yet been widely standardised; it is not unusual for different authors to evaluate their

segmentation techniques on different datasets. This makes a comparison between different

reported approaches difficult [44] since significant differences between datasets exist. Some

datasets are, for example, based on patients with known cardiac problems and others on

volunteer medical students that are generally healthy. Healthy hearts have less variance

in shape and have more predictable temporal behaviour, which makes their segmentation

easier.

A comparison of results reported in literature is further complicated by differing er-

ror criteria between techniques; variations on the Dice and landmark errors, as defined in

Section 5.2, are often used.

We evaluate our model on two datasets. Our segmentation process is trained and anal-

ysed on the York dataset [3] with respect to segmentation behaviour and its sensitivity to

placement of the initial centre point. This dataset contains ground truth annotations for all

frames and therefore contains important temporal information.

1http://dip.sun.ac.za/~janto/
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For comparison with other authors our technique is evaluated on the Sunnybrook [46]

MRI dataset. This dataset is not annotated for all frames, but has the advantage that more

authors have used this set to report their results.

6.1 York cardiac segmentation dataset

We evaluate our model on the MRI York dataset [3] provided by the Department of Diag-

nostic Imaging of the Hospital for Sick Children in Toronto and annotated by Andreopoulos

of York University. The dataset contains video sequences from 33 subjects, all under the age

of 18, displaying a variety of heart abnormalities such as cardiomyopathy, aortic regurgita-

tion, enlarged ventricles and ischemia. We split the dataset into three cross-validation sets:

11 subjects for training of the edge classifier, 11 subjects for CRF parameter estimation and

11 subjects for evaluation. Each set effectively contains approximately 100 video sequences

and each video contains 20 frames at different z-axis slice positions. The inner and outer

contours are manually annotated for all frames and are used as the ground truth in our

experiments.

For efficiency we only use video sequences of the sixth z-axis slice of each patient to es-

timate the CRF parameters. These slices do not necessarily coincide with the mid ventricle

for all patients. The number of slices where the ventricle is visible differs between patients

and is likely dependent on patient pathology. A different choice of training data is thus

likely to have a significant effect on the results of patients with, for example, hypertrophy.

This, however, has not been further explored.

From a visual inspection of the ground truth it is clear that there are inconsistencies in

the human annotations with regard to the inclusion of the papillary muscles in the inner

contour. These inconsistencies reduce the discriminative ability of the edge classifier and

influence the optimal CRF parameter values estimated during training. Also, because the

human annotated contours are used for evaluation, inconsistencies of the human annota-

tions need to be taken into account when interpreting any results based on this as ground

truth. In short: inconsistent examples in the evaluation set will result in an upper limit to

the accuracy achievable by any consistent system.
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6.1.1 Qualitative segmentation analysis

Figure 6.1: Selection of images and their automatically segmented contours (inner contour
is blue and outer is green) inferred from a testing set. The blue dot in the middle of the
endocardium is the estimated centre point.

Figure 6.1 illustrates our results on a selection of images from the testing dataset. A

visual inspection indicates that, for the majority of video sequences, our automated an-

notations are in line with expected behaviour with regard to shape, position and motion.

Of particular interest is the inclusion of the papillary muscles inside the inner contour. In

many of these cases the segmentation process is able to use local shape and temporal be-

haviour to identify the inner contour even though the edge is weak or absent.

We also observe robustness to some noisy images. These examples suggest that in some
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of these images where the automatic segmentation differs from the ground truth, the auto-

matic segmentation is superior to the manual approach. This is attributed to the fact that

the automated system is able to integrate temporal behaviour, something that is an arduous

task for a human.

Figure 6.2: A selection of images that are incorrectly segmented by the system.

Figure 6.2 contains a selection of images that are incorrectly segmented. If the centre

point is initialised outside the blood pool then the inner contour often tends to include the

cardiac wall in addition to the blood pool. This causes the outer contour to only partially

locate on the epicardium. A disappearing endocardium causes the inner contour to snap

onto the epicardium and the outer contour to locate onto structures outside the heart.
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Additionally, if the contrast between the blood pool and cardiac wall is very low, or

there are strong (non-papillary) edges within the blood pool then the inner contour of-

ten snaps onto these incorrect strong edges. In our experience the outer contour remains

largely unaffected in these situations.

6.1.2 Quantitative segmentation analysis

(a) Inner area (b) Outer area

Figure 6.3: Areas inside contours of human annotation against the areas inside automated
segmentation of testing data.

The areas inside the contours of the automatic annotations are plotted against the areas

inside the human annotated ground truth in Figures 6.3a and 6.3b. For small inner con-

tours our technique often yields segmentations larger than the ground truth. This can be

attributed to the automated segmentations being more “inclusive” of the papillary muscles,

which can significantly affect small contours. Our technique also provides slightly smaller

outer contours. A comparison with the ground truth indicates that our segmentation is of-

ten temporally smoother. This is attributed to the human annotator segmenting one frame

at a time, and thereby largely disregarding temporal behaviour.

The figures in 6.4 and 6.5 show frame Dice errors against time and slice position for

the inner and outer contours. The vertical axes of these graphs are logarithmically scaled.

The geometric means (arithmetic mean in the log-scale) in these figures are indicated by

solid black lines. We observe that the majority of incorrect segmentations occur during end

systole (t ≈ 8) and spatially lower slices (depth > 9) where the endocardium is at its small-
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(a) Inner contour errors (b) Outer contour Dice errors

Figure 6.4: Contour Dice errors over time. For illustrative purposes, a random real value
between zero and one was added to each frame number. The geometric mean for each
frame number is indicated by a black line.

(a) Inner contour errors (b) Outer contour Dice errors

Figure 6.5: Contour Dice errors over different slices. For illustrative purposes, a random
real value between zero and one was added to each slice depth. The geometric means for
the slice positions are indicated by the black line.
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est (sometimes completely disappearing from view). In these frames papillary muscles are

most visible, obscuring not only the border, but a significant part of the endocardium.

Authors Technique Inner contour Outer contour
error [mm] error [mm]

Our method CRF 1.57 1.78
Our method (without subjects 8 and 27) CRF 1.49 1.74

Andreopoulos and Tsotsos [3] AAM 1.43 1.51
Üzümcü [54] Landmark tracking 1.86 1.77

Jolly [23] Shortest Path 2.44 2.05
Cordero-Grande et al. [11] Edge MRF 1.37 1.22
Lorenzo-Valdés et al. [32] Surface MRF 2.99 2.21

Table 6.1: Segmentation errors as reported by different authors. These results are, however,
not strictly comparable since they are based on different datasets and the error criteria
differ.

Table 6.1 contains segmentation errors of the inner and outer contours as reported by

a selection of different authors. These results are from different datasets and there are

also subtle, but important, differences in the definition of the error criteria. Refer to the

individual papers for more detail. The results are therefore not strictly comparable. In

this table we report our results as the landmark error [3], i.e. the average of the shortest

distances between the points on the ground truth contour and the inferred contour. For a

more comprehensive study of reported errors see [44].

Figure 6.6: Incorrect automatically segmented contours (inner contour is blue and outer is
green) of Subject 8 due to a disappearing endocardium. The blue dot in the middle of the
endocardium is the estimated centre point.

On further inspection of the York dataset, the endocardium disappears from view in

some video sequences of Subject 8 (refer to Figure 6.6) who is diagnosed with ventricular

hypertrophy (enlarged cardiac wall thickness). It is also noted by the annotator of the
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dataset [3] that this yields bad segmentations in their work. Images of Subject 27 also have

relatively low contrast between the endocardium and the cardiac wall. We therefore regard

Subjects 8 and 27 as outliers and remove them from the dataset. This significantly improves

inner contour accuracy as indicated in Table 6.1.

6.1.3 Sensitivity to initial centre point placement

Figure 6.7: Sensitivity of segmentation with regard to incorrect centre point in first frame.
The value d is the fractional distance between the ground truth centre point and the ground
truth inner contour. See text for more detail.

Figure 6.7 illustrates the sensitivity of the segmentation to incorrect placement of the

initial centre point, c (0). For each video sequence, an initial centre point is generated at a

fractional distance, d, between the ground truth centre and a randomly selected point on

the ground truth inner contour. The CRF parameters are not retrained on these imperfectly

placed centre points, which would possibly allow the system to weigh shape information

less and thus improve results.
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As can be seen from Figure 6.7, the segmentations of the inner and outer contours re-

main relatively stable if c (0) is within the inner 20% of the endocardium. When placed at

approximately 50% between the ground truth centre point and inner contour, the spatial

continuity assumption of (3.12) is violated enough that the quality of the inferred contours

begin to deteriorate significantly.

6.2 Sunnybrook cardiac segmentation dataset

Machine Learning algorithms run the risk of specialising on properties that do not gener-

alise well to new datasets especially when the data is collected under conditions different

from the training set. This can be a challenge when applied to real-world conditions, often

requiring the user to normalise images, to remove variation, and risking degradation of

image information that could be important for segmentation. It is therefore important to

evaluate whether techniques are adaptable with minimal effort when data from a different

source is given.

The Sunnybrook Cardiac MR Database [46] is provided by the Sunnybrook Health Sci-

ences Centre and was used for the 2009 MICCAI Cardiac MR Left Ventricle Segmentation

Challenge. The dataset contains 45 subjects, with an average age of 61, with diverse mor-

phologies (heart failure with and without infarction, LV hypertrophy, and healthy subjects)

and is manually segmented by a cardiologist. The inner contours are annotated only at

end diastole and end systole, while the outer contours are annotated only at end systole.

A ground truth segmentation of the intermediate frames is therefore not available, making

extraction of temporal information for this dataset difficult.

Due to the sparsity of annotations in this dataset, all feature functions are re-used as

derived from the York dataset. The model used to segment the Sunnybrook data there-

fore includes features derived from the trained edge classifiers, temporal behaviour and

inner-outer relationships of the York dataset. Only the CRF parameters (i.e. the relative

importance of the features) are retrained on a training subset of the Sunnybrook data. To

further compensate for the relatively few examples, and thus avoid over-fitting, a very

weakly weighted L1-norm parameter regularisation term (∑d |log θd|) is added to the ob-

jective function. L1 regularisation is often used to assign zero to a large number of parame-
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ters. However, since this term is applied to the log of the parameters, it effectively penalises

the specialisation on features by the optimiser, tending to weigh them equally. A detailed

analysis of the effects of parameter regularisation in our application is beyond the scope of

this dissertation.

Figure 6.8: Examples from the Sunnybrook dataset with thin cardiac walls, as indicated by
the yellow arrows.

A notable difference from the York dataset is the presence of images of patients with

heart failure, where the cardiac wall is exceptionally thin, as indicated by the yellow arrows

in Figure 6.8. To compensate we modified the belief propagation algorithm by reducing the

minimum allowed difference (see Section 4.1) between the inner and outer variables (i.e.

wall thickness) from εM = 10 to εM = 2. We also reduced the radial offset used in the

features described by (3.15) and (3.16) from ερ = 2 pixels to ερ = 1, to adequately capture

the wall colour when very thin.

This modification suggests that there are important model parameters that are depen-

dent on the patient pathology. A practical segmentation tool could allow the operator the

option to provide a prior diagnosis or more fine grained control over some settings.

During training of the edge classifier from the York dataset, it was assumed that the

extracted radial window, vρ, contains an edge if the annotated edge is within two radial

distances from the middle of the window. This assumption is problematic if used to train

the edge classifier on the Sunnybrook dataset. A small wall thickness is common in this

dataset and would cause both the inner and outer contours to fall within this radial dis-

tance. This would result in inconsistencies in the training examples and thus weaken the

resulting edge detector. To train a classifier on this dataset it would thus be necessary to be
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more strict with regard to the minimum radial distance.

Figure 6.9: Selection of images and their automatically segmented contours (inner contour
is blue and outer is green). The blue dot in the middle of the endocardium is the estimated
centre point.

Figure 6.9 contains a selection of images from this dataset and their automatic segmenta-

tions. A qualitative examination of the results suggests that segmentations are generally of

good quality, i.e., the papillary muscles are included even if they obscure the endocardium

border.

Bland-Altman plots of end-diastole volume, end-systole volume, ejection fraction and

mass are shown in Figure 6.10. The end-diastole volumes, as predicted by our technique

and as annotated by the human specialist, agree with a small bias and variance (−3.35±

7.61 ml). End-systole volumes agree with a small bias, but a relatively large variance (1.75±

20.21 ml). This leads to a relatively small bias, but relatively large variance in the agreement

of the calculated ejection fractions (−4.66± 10.73 %). The calculated left ventricle mass has

a small bias and variance (−0.95± 11.58 %).

The end-diastole volume in Figure 6.10b and Bland-Altman plot of end-diastole in-

ner contour area in Figure 6.10f also illustrate the algorithm’s tendency to yield contours

smaller than the ground truth at end-diastole. The Bland-Altman plot of end-systolic vol-

ume in Figure 6.10a and end-systolic inner contour area in Figure 6.10e illustrate that small

volumes are overestimated and large volumes underestimated.

Table 6.2 contains a summary of Dice similarities and APD as reported by various au-
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Authors Dice similarity APD (mm)
inner outer inner outer

Our method (trained on York) 0.87 0.92 2.70 2.23
Our method (after retraining) 0.91 0.93 1.84 1.95
Marak et al. [34] 0.86 0.93 2.6 3.0
Lu et al. [33] 0.89 0.94 2.07 1.91
Wijnhout et al. [59] 0.89 0.93 2.29 2.28
Casta et al. [8] - 0.93 - 2.72
O’Brien et al. [41] 0.81 0.91 3.73 3.16
Constantinides et al. [9] 0.89 0.92 2.35 2.04
Huang S. et al. [20] 0.89 0.94 2.10 1.95
Jolly [23] 0.88 0.93 2.44 2.05

Table 6.2: Average Dice similarity metric and Average Perpendicular Distance (APD) for
our segmentation of the Sunnybrook validation set (before and after training) and results
reported by the different MICCAI challenge entries.

thors on the Sunnybrook dataset during the MICCAI challenge [44, 46] including our re-

sults, before and after parameter retraining. Prior to retraining (i.e. parameters as derived

from the York dataset), results are comparable but slightly worse than the top perform-

ing challenge entries. After parameter re-estimation on the Sunnybrook training subset

our results are superior to the entries on the validation set in terms of the inner contours’

Dice metric. Our average Dice similarity of the outer contours is comparable to the best

performing entries in the challenge.

Table 6.2 also contains the Average Perpendicular Distance (APD) of various authors.

The APD is calculated as the average of the perpendicular distance from each point on the

reference contour to the target contour. The APD is therefore similar to the non-symmetric

landmark distance. Our average APD for the inner and outer contours are equal to or

smaller than reported by any of the authors in the challenge.

Table 6.3 provides a more detailed report on the resulting segmentations of the patients

in the validation set, as generated by the evaluation code provided with the dataset. The

table also indicates the percentage of good contours for each subject, i.e. those with an APD

smaller than 5mm.

Our segmentation process performs well on those subjects in the validation set with

normal heart function (SC-N) and those with heart failure with (SC-HF-I) and without in-

farction (SC-HF-NI). Our process performs worst on the inner contour of patients in the

validation set with hypertrophy (SC-HYP) as is illustrated in Figure 6.11. This effect is also
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Patient Good (%) APD (mm) Dice similarity
inner outer inner outer inner outer

SC-HF-I-05 100 100 1.52 1.86 0.94 0.95
SC-HF-I-06 100 100 1.66 1.45 0.92 0.95
SC-HF-I-07 100 100 2.37 2.79 0.89 0.90
SC-HF-I-08 95 100 1.68 1.37 0.93 0.96
SC-HF-NI-07 100 100 2.21 2.20 0.91 0.93
SC-HF-NI-11 100 100 1.70 1.25 0.93 0.96
SC-HF-NI-31 100 100 2.06 1.58 0.91 0.95
SC-HF-NI-33 94 100 1.68 1.64 0.91 0.94
SC-HYP-06 92 100 1.67 2.05 0.90 0.92
SC-HYP-07 69 100 1.39 1.83 0.93 0.94
SC-HYP-08 68 100 2.27 2.33 0.90 0.93
SC-HYP-37 69 71 2.21 2.44 0.86 0.91
SC-N-05 93 100 1.67 2.45 0.89 0.89
SC-N-06 100 86 1.76 2.12 0.89 0.91
SC-N-07 100 100 1.79 1.95 0.88 0.90
mean 92 97 1.84 1.95 0.91 0.93
std deviation 12.4 8.0 0.30 0.44 0.02 0.02

Table 6.3: Patient specific Average Perpendicular Distance (APD), and Dice similarity be-
tween annotations and ground truth of the Sunnybrook validation set.

observed in other models by different authors [44].

6.3 Summary

Through analysis of results on the York and Sunnybrook datasets we conclude that our seg-

mentation process compares well with, or outperforms many existing techniques in terms

of accuracy on these datasets. We also conclude that our segmentation process generalises

well to new datasets and can be easily retrained for increased accuracy.

Our segmentation process relies, however, on accurate placement of the initial centre

point. Furthermore, segmentation for subjects with ventricular hypertrophy, where the en-

docardium can completely disappear from view during end-systole, is found to be difficult.
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(a) end-systole volume (b) end-diastole volume

(c) ejection fraction (d) mass

(e) end-systole area (f) end-diastole area

Figure 6.10: Bland-Altman plots of end-systolic volume, end-diastolic volume, ejection
fraction, mass, end-systolic area and end-diastolic area. Each dot represents a video se-
quence in the validation set. The vertical axes are of automatically determined minus ground
truth values. Mean difference and standard deviation lines are included.
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Figure 6.11: Selection of images from validation patient images with hypertrophy and their
low quality automatically segmented contours (inner contour is blue and outer is green).
The blue dot in the middle of the endocardium is the estimated centre point.
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Chapter 7

Concluding remarks

The segmentation process, as outlined in this dissertation, provides an approach that miti-

gates the effects of papillary muscles and performs well on a variety of images. We achieve

this by integrating features that combine edge, shape and temporal information derived

from an annotated dataset into our model. We develop a strategy to tractably derive suit-

able estimates of the model parameters. A strategy to efficiently infer segmentations from

this model is also presented. To our knowledge, this is the first time that either CRFs or

belief propagation have been applied to this problem.

Our evaluation is, however, incomplete without discussing some of the limitations of

the model and changes that can be made to improve segmentation accuracy.

7.1 Model limitations

Many of the current limitations in the model stem from the manner in which the segmen-

tations are parametrised. Recall that the centre of the endocardium is used as a point of

reference for both the inner and outer contour radii. The outer contour is relatively station-

ary during the cardiac cycle, while the inner contours can undergo significant translation.

Using the translating centre point of the endocardium as a reference point for the outer con-

tour, its radial values used to describe the contour can change significantly even though the

contour remains stationary. This makes the feature function that describes the relationship

of radial values of the outer contour over time, less effective. Using different centre points
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for the inner and outer contours is possible, but complicates the calculation of features

relating the behaviour of the inner and outer contours and cardiac wall.

The current model also assumes that the inner contour is visible in every image. The

endocardium can, however, disappear from view in images in the lower slices of patients

with ventricular hypertrophy (enlarged cardiac wall thickness). This causes the segmen-

tation process to fit the inner contour to the nearest edges, which often corresponds to the

outer contour, and forces the inferred outer contour to fit to non-cardiac structure edges.

This can have a significant effect on the segmentation quality.

7.2 Future work

No image preprocessing is done to compensate for effects such as different intensity set-

tings on the MRI equipment. Image equalisation could be used to compensate for these

effects and would likely improve segmentation results.

Ideally, the time of end-systole in (3.14) should not be specified before inference; how-

ever, this might require a second order CRF or modelling tES as an additional unobserved

variable. Alternatively, techniques based on detecting temporary suspension and reversal

of optical flow in the images could be applied.

A second order system would also make the incorporation of contour smoothness infor-

mation possible, as currently only contour continuity is taken into account. Alternatively,

post-processing of the resultant contours by fitting them to splines, would improve contour

smoothness.

Although there are no conceptual difficulties in using higher order systems, the increase

in computational cost is, however, significant, both in terms of training and inference.

Future investigations might also concentrate on improving the centre point estimation

via better features and improving runtime performance. As mentioned previously, formu-

lating the centre point estimation as a model that can be solved with dynamic programming

allows us to cast its optimisation as a belief propagation algorithm. This has the advantage

that the centre point can be estimated as an additional latent variable in our CRF model,

that needs to be inferred.

The development of a fast heuristic to estimate the centre points is also possible. Since
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the blood pool disappears only once in each cardiac video sequence, we speculate that

results from an online “greedy” tracking of the centre point from both the start and end

of the sequences towards the middle frames, could be combined to produce a sufficiently

accurate, yet fast, procedure.

Fusing the different spatial slices into a unified 3D and time model might also increase

segmentation accuracy. Information at spatially higher slices, where the papillary muscles

are less problematic, could then be used to improve the accuracy at lower slices. Linking

the radial values between different slices would be relatively simple. This can be done

with appropriate feature functions similar to those restricting radial continuity in a single

contour. The main challenge is perhaps the alignment of the spatial slices to compensate

for translation caused by different levels of inhalation and expiration between acquisition

of the slices.

Modifying the results of the belief propagation process to address user interaction re-

quirements, specifically responsiveness, is discussed in Appendix B.

7.3 Summary

In this dissertation we present a model for the automated segmentation of the inner and

outer contours of the left ventricle. Features are derived from the discriminative infor-

mation provided by a human annotated dataset. Robustness against the inclusion of the

papillary muscles is obtained by integrating shape and motion information from all the

frames in the video sequence.

To compensate for the approximate nature of inference and avoid calculating the parti-

tion function, a gradient-free approach is followed where the segmentation error is treated

as a “black box”. This allows us to integrate the approximate inference process into the

training stage.

It should be emphasised that the system is able to integrate temporal information avail-

able in the total video sequence and not only individual frames. Since this information is

not readily available to humans, automated systems such as this might yield segmentations

that are superior to that which are attainable by a human annotator that considers only one

frame at a time, with only a rough consideration of previous frames.

72



By using our presented process, the segmentation of a cardiac MRI video sequence can

thus be completed within a short time with minimal user interaction, i.e. only a single initial

centre point is required for each cardiac cycle.
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Appendix A

Edge properties

Analysis of the behaviour of the edges aids in an intuitive understanding of the model’s

behaviour. This is unfortunately difficult due to the complexity of multi-layer neural net-

works. To gain some insight into the nature of the edges we therefore briefly investigate a

logistic regression classifier (see e.g. [5]) trained on the same data. One of the advantages of

using a logistic regression classifier is that it allows us to analyse the resultant coefficients

for an intuitive interpretation of its decision boundary. It should be emphasised that we

are not attempting to derive hints towards the behaviour of the trained neural network,

but are investigating properties of the inner and outer edge classes.

Similar to the neural network in Section 3.4.1 we train logistic regression classifiers

based on the probability of the presence of the cardiac edge, e, given the image values

in a window, vρ,

P
(
e
∣∣κ (vρ

)
, ρ
)
=

1
1 + exp

(
−β · κ

(
vρ

)) . (A.1)

Recall that the input feature vector (the transformation of the image window values) is

κ (v) =
(

∂v
∂ρ

,
∣∣∣∣∂v

∂ρ

∣∣∣∣ , sign
(

∂v
∂ρ

)
,
[∣∣∣∣∂v

∂ρ

∣∣∣∣ > ε

])
. (A.2)

Again, we train different edge classifiers for eight different angles,

Pout
b8n/Nc

(
e
∣∣κ (vρn

)
, ρn
)

, (A.3)
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and thus allow the classifiers to identify features that it might find relevant for that direc-

tion.

Figures A.1a and A.1b illustrate the coefficients for the inner and outer classifiers of

P
(
e
∣∣κ (vρn

)
, ρn
)

for different angles. Specifically, the coefficients for each direction-dependent

classifier are represented by a grey line. The average for each coefficient over the eight clas-

sifiers in all the directions is represented by a black line. The four coefficient groups (0 . . . 64,

64 . . . 128, 128 . . . 192 and 192 . . . 256) each corresponds to the four different gradient feature

types in (A.2).

By observing a coefficient’s magnitude and sign differences over the angular directions,

we deduce the edge classifier’s behaviour on different parts of the cardiac structure as they

fall within a classifier’s window.

It is important to note that the features are not whitened (scaled by their standard de-

viations) before being used to train the coefficients. This makes comparison between co-

efficients from different groups within a classifier deceptive as the scales of the types are

inherently different. It is still, however, possible to compare the coefficients from the same

group between different classifiers.

Consider the coefficients for the inner classifier in Figure A.1a. As expected, the coeffi-

cient magnitudes are the largest at positions corresponding to the centre of each window

(at 32, 96, 160, 224), since gradient information near the position being considered for an

edge is more important than further away.

Coefficients 0 . . . 64 weight the contribution of the signed gradient ∂v
∂ρ . We can see that

for the inner edge classifier all directions have strongly negative coefficients in the middle

of the window and thus favour pixel transitions from high to low intensity. This is in

agreement with the transition from the often lighter blood pool to the darker cardiac wall.

This effect is also pronounced when only the sign of the gradient is considered (coefficients

128 . . . 192, sign
(

∂v
∂ρ

)
). This also corresponds to the heuristically derived features that are

used in [13].

When considering the same coefficients (0 . . . 64 and 128 . . . 192) for the outer edge de-

tector in Figure A.1b we similarly observe a strong response around the centre, but with a

much larger variability across the different angular directions, with some coefficients pos-

itive and others negative. This is consistent with the outer contour’s edge transitioning
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from the cardiac wall to the darker area outside of the heart on the right side, and from the

cardiac wall to the lighter right ventricle’s blood pool on the left side.

The outer classifier also generally responds more strongly than the inner classifier to

high values of the unsigned gradient
∣∣∣ ∂v

∂ρ

∣∣∣ (coefficients 64 . . . 128), i.e. edges with a large

magnitude. We speculate that this is due to the presence of papillary muscles weakening

the discriminative power of the unsigned gradient features for the inner edges.

The inner and outer classifiers both favour the presence of an edge above its absence (co-

efficients 192 . . . 256,
[∣∣∣ ∂v

∂ρ

∣∣∣ > ε
]
), however, the outer classifier’s high coefficients are more

concentrated around the centre of the window. This could be due to inconsistencies in the

ground truth annotations with regard to the degree of inclusion of papillary muscles, as the

presence of an edge could easily be missed by a human annotator if the intensity difference

is small.

A smaller window size would allow for a finer classifier; however, with the possible

loss of contextual information the usefulness of this reduction is questionable. Note for

example the part of the sub-window to coefficients 32 . . . 64 of the inner classifier. These

coefficients are relatively high and thus important for discriminating the inner edges. On

inspection these sub-window areas often contain outer edges, which are informative for

the presence of an inner edge at the window centre.
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(a) Inner coefficients

(b) Outer coefficients

Figure A.1: Edge classifier coefficients for the inner and outer contours for different angles.
Each of the eight direction-dependent classifiers is represented by a grey line. The average
for each coefficient over the classifiers in all the directions is represented by the black line.
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Appendix B

User interaction

To improve the usability as a software package it is desirable that the user can correct bad

quality segmentations. We briefly describe a process that improves the contours in a video

sequence after one or more contour points are provided by the user.

Assume that automatic segmentation has been completed and the user specifies a single

point to which a contour must connect. The location of the point
〈
t̂, x̂, ŷ

〉
is first transformed

into the log polar space as
〈
t̂, n̂, ρ̂

〉
.

To update the segmentation, belief propagation is repeated, but messages received by

the variable ρn̂
(
t̂
)

are replaced by

m
(
t̂, n̂
)
=


0 if ρ = ρ̂

K otherwise
(B.1)

where K is a large value. With a significantly large K, beliefs for incorrect assignments to

this variable are thus penalised enough that they are unlikely to result during backtracking.

This process can be repeated for any number of points, however, propagation of mes-

sages through the graph takes a few seconds. This delay can significantly impact the user

experience since typical user behaviour is to place a point, analyse the effects on segmen-

tation and then to slightly modify the placed point. The time to belief propagation conver-

gence can be reduced by initialising messages to their values before the point was added.

We, however, wish to use a process that takes less than 100 milliseconds. This would al-
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low points to be dragged with a mouse to better locations, while the rest of the contour is

quickly updated.

To improve the user experience we recommend that message propagation be executed

as a background process, while a temporary version of the contour being refined is shown

to the user. To construct this temporary contour, after a single point is provided by the

user, backtracking for this contour is repeated, but initiated from the user provided point.

As backtracking is done first in the radial direction, this ensures that the rest of the contour

is consistent with the radial factors. The backtracking is done on the messages before it is

updated and is therefore fast enough to be used to smoothly update the contour while the

user provided point is being dragged around.

Updating of the messages in the background is still necessary, since effect needs to be

propagated to the other contours in the video sequence. There is therefore a delay between

the addition of points by the user, however this effect is not as noticeable as an update

while a point is being adjusted.
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Appendix C

Additional 3D image

Figure C.1 shows a three dimensional reconstruction of an automatic segmentation at end-

diastole. The different spatial slices were aligned to compensate for different breath hold

levels by aligning the middle of the segmented outer contours. This example illustrates

that a 3D animated model could be constructed from the automatically annotated images.

Figure C.1: Three dimensional construction of an automatic segmentation at end-diastole.
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