
Interactive Recognition of

Hand-drawn Circuit Diagrams

Janto F. Dreijer

Thesis presented in partial fulfilment of the requirements for the degree of

Master of Science in Engineering (Electronic Engineering with Computer

Science) at Stellenbosch University

University of Stellenbosch

Department of Electronic Engineering

Supervisor: Retief Gerber

Co-supervisor: Thomas Niesler

December 2006

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is

my own original work and that I have not previously in its entirety or in

part submitted it at any university for a degree.

Janto Dreijer

November 2006

i

Abstract

When designing electronic circuits, engineers frequently make hand-drawn

sketches of circuits. These are then captured with a computerised design.

This study aims to create an alternative to the common schematic cap-

ture process through the use of an interactive pen-based interface to the

capturing software.

Sketches are interpreted through a process of vectorising the user’s strokes

into primitive shapes, extracting information on intersections between prim-

itives and using a naive Bayesian classifier to identify symbol components.

Various alternative approaches were also considered.

It is concluded that it is feasible to use a pen-based interface and underlying

recognition engine to capture circuit diagrams. It is hoped that this would

provide an attractive early design environment for the engineer and enhance

productivity.

ii

Opsomming

Wanneer ingenieurs elektroniese stroombane ontwerp, word daar dikwels

handgetekende sketse gemaak. Die sketse word dan vasgevang in ’n rekenaar

vir verdere ontwerp. Hierdie studie beoog om ’n alternatief tot die algemene

skematiese vasvangingsproses te lewer deur die gebruik van ’n interaktiewe

pen-gebaseerde koppelvlak.

Sketse word gëınterpreteer deur ’n proses waar die gebruiker se penkurwes

gevektoriseer word na primitiewe vorms en informasie oor die interseksies

tussen primitiewe onttrek word. ’n Näıewe Bayesiese klassifiseerder word

dan gebruik om simbole te identifiseer. Verskeie alternatiewe benaderings

is ook oorweeg.

Die gevolgtrekking word dan gemaak dat ’n pen-gebasseerde koppelvlak en

onderliggende herkennings algoritmes gebruik kan word om stroombaan-

diagramme vas te vang. Dit kan ’n aantreklike omgewing in die vroeë ont-

werpstadium vir die ingenieur lewer en produktiwiteit verhoog.

iii

Acknowledgements

My thanks are expressed to

• My study leader Retief Gerber, Thomas Niesler and fellow students,

for their ideas and input during the development of the software and

the written text

• My mom and dad for making my education a possibility and helping

me finish this report, in particular with proofreading and guidance.

• Carey, for her caring and support in other parts of my life.

iv

Contents

Declaration i

Abstract ii

Opsomming iii

Acknowledgements iv

Contents v

List of Abbreviations ix

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Problem Description . 1

1.2 Scope of Solution . 3

1.3 Study Overview . 5

v

CONTENTS vi

2 Related Research 6

2.1 Intersection Features . 6

2.2 Glyph Language . 8

2.3 Stroke Order Analysis . 10

2.4 Graph Matching . 10

2.5 Moments . 12

2.6 Fluid Sketches . 13

2.7 Research Summary . 14

3 Prototype Development 16

3.1 System Requirements . 16

3.1.1 Stroke Interpretation 17

3.1.2 Primitive Interpretation 17

3.1.3 Recognition Stages 18

3.2 Design Overview . 18

3.3 Stroke Capture . 19

3.4 Primitive Identification . 20

3.4.1 Opt-out parameters 24

3.5 Primitive Clustering . 25

3.6 Symbol Recognition . 27

3.6.1 Primitive Intersections 28

3.6.2 Symbol Classifiers . 29

CONTENTS vii

3.6.3 Training Data . 32

3.7 Symbol Properties . 34

3.7.1 Primitive Mapping 34

3.7.2 Symbol Rotation and Translation 35

3.8 Interface . 37

3.9 Design Summary . 40

3.10 Implementation . 40

3.10.1 Tools . 40

3.10.2 Implementation Methodology 42

3.10.3 Data Formats . 43

4 Evaluation 46

4.1 Recognition Accuracy . 46

4.1.1 Primitive Identification Accuracy 47

4.1.2 Symbol Recognition Accuracy 48

4.2 Performance . 51

4.3 Usability Analysis . 51

5 Recommendations and Conclusions 53

5.1 Future Work . 53

5.1.1 Algorithm Enhancements 53

5.1.2 Interface Enhancements 55

5.2 Suggested Applications . 56

CONTENTS viii

5.3 Conclusions . 56

Bibliography 58

A Classifier Tutorial 63

A.1 Linear classifiers . 63

A.2 Gaussian distributions . 65

A.3 Dimensional variance . 66

B Intersection Analysis 67

C Code Structure 69

List of Abbreviations

Abbreviation Description Definition

CAD Computer Aided Design page 1

HMM Hidden Markov Model page 10

PDF Probability Density Function page 22

SPICE Simulation Program with Integrated Circuits

Emphasis

page 1

XML Extensible Markup Language page 41

ix

List of Figures

1.1 Kicad schematic editor . 2

1.2 Tablet PC . 4

2.1 Gennari interface . 7

2.2 LADDER example . 9

2.3 Semantic network of square . 11

2.4 Fluid sketch . 13

3.1 Recognition steps example . 18

3.2 Data flow diagram . 19

3.3 Primitives . 20

3.4 Primitive features histogram . 23

3.5 Clustering example. 26

3.6 Symbol definitions. 27

3.7 Diode intersections . 29

3.8 Histograms of selected features for box, diode and bjt. 31

x

LIST OF FIGURES xi

3.9 Box intersections . 32

3.10 Symbol mutation examples . 33

3.11 Training a symbol classifier from mutations 34

3.12 Interface example . 38

3.13 Interface state machine . 39

4.1 Symbols easily confused. 50

A.1 Measurable features of Apples and Oranges 64

A.2 Euclidean and Gaussian distance metrics 65

A.3 Measurable features of Apples and Oranges 66

B.1 Two line primitives intersecting. 67

C.1 Diagram of symbol related classes. 69

C.2 Diagram of primitive related classes. 70

C.3 Directory tree . 71

List of Tables

3.1 Intersection types. 28

4.1 Primitive example set size . 47

4.2 Primitive confusion matrix . 47

4.3 Symbol example set size . 48

4.4 Symbol example set classification accuracy 49

4.5 Symbol confusion matrix . 50

C.1 Source Files . 72

xii

Chapter 1

Introduction

1.1 Problem Description

Circuit diagrams are used to design electronic modules or systems. When

designing an electronic circuit, an engineer usually makes a rough initial

drawing. This is regularly done on paper and follow various phases of re-

drawing. After many versions, when he/she is satisfied with the design, the

schematic is captured on a computer using computer aided design (CAD)

software1. From here the circuit can be further edited, refined, integrated,

simulated with systems such as SPICE2, tested and finally used to generate

a physical layout (floor plan) used in the manufacturing process.

Capturing a circuit diagram for use in CAD software can be done with a

1Examples include products such as Cadence’s OrCAD Capture, Altera MaxPlus and

the open-source Kicad.
2From http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE: “SPICE is a general-

purpose circuit simulation program for non-linear DC, non-linear transient, and linear

AC analyses. Circuits may contain resistors, capacitors, inductors, mutual inductors,

independent voltage and current sources, four types of dependent sources, transmission

lines, and the four most common semiconductor devices: diodes, BJTs, JFETs, and

MOSFETs.”

1

CHAPTER 1. INTRODUCTION 2

schematic editor (Fig. 1.1). Inserting components using a schematic editor

usually involves clicking an icon representing a component or browsing and

selecting one from a large library and then clicking the desired placement

on a canvas.

Figure 1.1: Kicad schematic editor.3

Modern CAD software already offers the designer several advantages if used

from the earliest design stage [1]. Advantages include fast prototyping,

auto-generation of subcircuits and avoiding errors in the capturing stage.

The question of why designers still use pen and paper instead of a computer

as the first step in the design process can be raised. Many engineers avoid

the use of a schematic editor for non-trivial circuits until the design has

become more concrete. Reasons often cited are

• that the designer was away from their desktop computer

3http://www.lis.inpg.fr/realise au lis/kicad

CHAPTER 1. INTRODUCTION 3

• frustration with the speed and intuitiveness of inserting items from

the CAD software’s component library

• forming connecting wires between components using the software is

usually a frustrating experience and not conducive to the creative

process

Modern portable technology, however, creates the opportunity for a friendly,

familiar and interactive design environment. By leveraging existing elec-

tronic input devices it should be possible to create a system where the user

is able to select components from a library by simply drawing the corre-

sponding symbol. This would, hopefully, alleviate some of the problems of

using a computer in the early design stage, as mentioned above.

1.2 Scope of Solution

A tablet PC (Fig. 1.2) is a fully-functional laptop, but also provides the op-

tion of using a stylus or digital pen instead of a keyboard or mouse. In 2002,

with the introduction of Microsoft’s Windows XP Tablet PC Edition, tablet

PCs have entered mainstream usage. At the time of writing, most tablet

PCs run Windows XP Tablet PC Edition, which features advanced hand-

writing recognition technology, but does not include any tools for graphics

recognition.

This study aims to create an alternative to the “click-and-drop” capture

process through the use of a schematic recognition algorithm and a tablet-

based capturing interface. It is hoped that using a portable device, such as

a tablet PC, will provide designers with the tools needed to easily sketch

circuit diagrams when away from their desktops, and leverage the benefits

of using a computer in the early design stage [1, 2]. The extra mobility

afforded by electronic tablets should also be a welcome advantage; allowing

the designer easier face-to-face collaboration with other designers.

CHAPTER 1. INTRODUCTION 4

Figure 1.2: Tablet PC

This project also aims to increase productivity in the early design process

by enabling a designer to sketch architectures (using a mouse or pen-based

electronic tablet) which are then automatically converted into SPICE. This

alternative to the current click-and-drop methodology of CAD should feel

more familiar to the designer.

Because the Tablet PC does not currently include sketch recognition ca-

pabilities, a system that interprets the user’s drawing as a circuit diagram

needs to be developed. Existing recognition systems can be categorised as ei-

CHAPTER 1. INTRODUCTION 5

ther off-line or on-line. Off-line recognition involves scanning in a schematic

or text that was drawn on paper, and a computer interpreting the resulting

raster image. Optical character recognition or OCR is a commonly known

example of off-line recognition. On-line recognisers have additional tempo-

ral information, as strokes are directly captured as they are drawn. This

provides extra accuracy and allows a large degree of interaction between the

system and the user.

It should also be possible to use the Tablet PC’s handwriting recognition

capabilities to add character recognition to this interface.

1.3 Study Overview

The goal of this study is a proof of concept: to prove the viability of using

a tablet for schematic capture. It should be possible to use a pen-based

interface and underlying recognition engine to capture circuit diagrams and

thus provide an attractive early design environment for the engineer.

With this goal in mind it is necessary to analyse work related to on-line

schematic recognition and develop and analyse a prototype of a recognition

engine. This study will briefly discuss the related algorithms in Chapter 2.

Chapter 3 will then detail the design and implementation of the engine. The

system is evaluated in Chapter 4 by examining its accuracy and usability.

Finally recommendations on possible improvements on and applications for

the developed system is discussed in Chapter 5.

Chapter 2

Related Research

Various studies related to on-line drawing recognition have been undertaken

by the academia for recognition of flow diagrams [3], UML diagrams [4],

Chinese [5] and Japanese characters, musical notation [6] and simple circuit

diagrams [7]. These systems provide a basis for this study.

A few major on-line strategies related to the goal of recognising the parts of a

circuit diagram were considered: matching intersection features, matching

against a linguistic description of a symbol, recognition based on stroke

ordering, graph matching, moments as features and finally fluid sketches

as a way to recognise primitive shapes. These strategies are discussed and

evaluated for applicability in the rest of this chapter.

2.1 Intersection Features

Kara [8] has recently (2004) released his Ph.D. dissertation on automatic

parsing and recognition of hand-drawn sketches for pen-based interfaces.

He discusses three different strategies for schematic sketch capture. Also

detailed is VibroSketch: a sketch-based interface for vibratory symbols and

6

CHAPTER 2. RELATED RESEARCH 7

SimuSketch [3]: a sketch-based interface to Matlab’s Simulink.

Together with Kara, Gennari et al. [9] developed AC-SPARC, a sketch-

based interface for an electronic analysis program. A screen capture of AC-

SPARC can be seen in Fig. 2.1. Their technique involves segmenting the

user’s pen strokes, identifying line and arc primitives, and finally clustering

together and recognition of primitives as symbols. Recognition involves

pruning the list of candidates based on domain knowledge and classification

using a naive Bayesian classifier. Nine geometric properties (number of lines,

number of arcs, number of endpoint “L” intersections, point-to-midpoint

“T” intersections, midpoint “X” intersections, etc.) are extracted from

symbol examples and used to train the classifier. Error correction is then

attempted through a rule-based process.

Figure 2.1: Gennari: Interpreted sketch with colour coding and text labels

to indicate the identified symbols.

In one of their experiments, six examples for each of 7 symbols were provided

by each member of a user group. One of the authors trained the system by

CHAPTER 2. RELATED RESEARCH 8

providing 10 examples of each symbol. An average recognition accuracy of

75% across the user examples was reported.

In this author’s opinion, requiring a user to train a classifier with a variety

of examples for each symbol can be a frustrating experience. It would be

preferable to reduce the number of required training examples to as few as

one.

The authors of AC-SPARC claim to be able to generate SPICE, however for

this to be possible a mapping of component ports is needed. No such algo-

rithm was presented and it is questioned whether using the stated method

alone is sufficient to directly derive more than two port mappings per sym-

bol.

2.2 Glyph Language

Alvarado and Hammond [10, 11, 12] uses a Bayes net generated dynamically

from a hierarchical description of shapes, in a language called LADDER.

This describes a symbol according to a set of hypotheses based on the

geometric relationship between the constituent primitives.

Primitive shapes are first identified from a stroke by comparing the least

square error between a shape and the pixels of the drawn stroke. Similarity

thresholds where determined through manual experimentation and taking

measurements from collected data.

Fig. 2.2 shows examples of a few symbols, their primitives and linguistic

description of the relationships. The symbol in the first column is specified

as a collection of subshapes as shown in the third column. The relative

geometric properties between these subshapes are also manually derived

and is as shown in the fourth column. These properties can then be used

to identify similar symbols.

To address the noise and ambiguities in the drawn schematic the LADDER

CHAPTER 2. RELATED RESEARCH 9

Figure 2.2: Example symbol descriptions in LADDER. From [11] page 115.

language contains an “optional” flag on constraints and primitives. Even

with a well designed language, however, specifying good grammatical shape

descriptions may be difficult and time consuming and is something of an

art [11, 13].

A hardcoded glyph language would therefore be more suitable when trying

to recognise a small, non-expanding symbol set. Other members of their

group (particularly Veselova [14, 15]) have developed a system that is able to

learn shape descriptions based on few examples. This is done by generating

a textual language representation based on properties inferred from human

perceptual bias studies.

The author is of the opinion that although the system is able to recognise

partially drawn shapes, applicability is questionable when considering the

complexity and performance [10] of the algorithm.

CHAPTER 2. RELATED RESEARCH 10

2.3 Stroke Order Analysis

Hidden Markov Models have been extensively used in character recognition.

HMM-based methods have also been investigated for sketch recognition by

Sezgin and Davis [16]. Their studies suggest that stroke orderings may be

different for each individual, but persist across sketches for each individ-

ual. It, however, assumes that stroke ordering for an individual will also

persist across multiple sittings. Unfortunately in more complex diagrams

(such as circuit diagrams), different orientations of symbols will effect the

individual’s stroke ordering.

Stroke order analysis is thus more a recognition of the user’s drawing style

than recognition of the structure of the symbol. It would therefore be

necessary to collect training data for an individual over a period of time as

opposed to only one sitting.

HMM strategies, although currently popular in handwriting recognition,

is thus not applicable to this kind of sketch recognition system and other

strategies also have to be explored.

2.4 Graph Matching

Other strategies involve constructing an attributed relational graph of a

symbol’s geometric properties. This has been done for fingerprint iden-

tification [17]. Generally nodes represent the primitives in a symbol and

edges in the graph relate the geometric/structural relationship between

these primitives (see Fig. 2.3). Unknown symbols are then matched to

symbol definitions by measuring the similarity between graphs.

Calhoun et al. [18] compares graphs through a process of direct comparison

of nodes and edges and computing an error function. The choice of which

CHAPTER 2. RELATED RESEARCH 11

primitives are compared depend on the order in which they where drawn.

This assumption was relaxed by generating all possible assignments for the

first primitive in each definition, allowing more variation in stroke order.

Figure 2.3: The semantic network definition of a square. The edges repre-

sent parallel and perpendicular relationships and intersections. From [18].

Line intersection points can be extracted as was done by Gennari et al.

[9] and then grouped together into nodes according to the distance be-

tween these intersections. Graph comparisons or dynamic programming

techniques could then be applied to identify symbols.

A planar graph representation could also be constructed from a drawn sym-

bol with intersections between primitives represented by the graph’s nodes.

Edges between the nodes represent primitive segments between intersec-

tions. Matching of symbols would then be equivalent to matching their

planar graphs.

The computational complexity of the graph isomorphism problem (deter-

mining a permutation of the vertices of one graph so that it is exactly equal

to the other) has not yet been classified within a particular type of complex-

ity and remains an open theoretical problem [19]. Fortunately there exist

CHAPTER 2. RELATED RESEARCH 12

efficient linear time solutions for some special classes such as planar graphs

[20] by partitioning the graph into pieces of small tree-width, and applying

dynamic programming within each piece.

Inexact graph matching (when an isomorph does not exist, such as when the

number of edges differ), however, is known to be NP-complete. Due to its

combinatorial nature inexact graph matching is a computationally expensive

process and should approximated if to be practical. See Bengoetxea [19] and

Brooks [21] for an overview.

For this reason graph matching will not be used to compare an unknown

symbol to a library of symbols for identification. It will, however, be used to

extract certain properties, such as orientation, after a symbol is identified.

This will be discussed in more detail later.

2.5 Moments

Moments have been used primarily in the recognition of Chinese charac-

ters [22, 23] but also for interpreting hand-drawn musical notation [6] and

symbols such as polygons and arc shapes [24].

Liao and Lu [22] combined properties from Legendre moments to form a

vector in multidimensional space to represent a Chinese character. Using the

root mean square distance between vectors as a difference measure between

characters, they noted significant improvements in terms of optical character

recognition of Chinese. This is especially true for characters close in shape.

Hse and Newton [24] presented an on-line recognition method for hand-

sketched symbols using Zernike moments. Zernike moments are invariant

to rotation, scaling and translation of symbols. Using a support vector

machine they report a high accuracy for simple polygonal shapes.

Ong and Lee [25] introduced a new set of orthogonal moment functions

based on the discrete Tchebichef polynomials. Since the basis set is orthog-

CHAPTER 2. RELATED RESEARCH 13

onal in the discrete domain and the method does not involve any numerical

approximations, it is superior to the conventional moments such as Legen-

dre and Zernike in terms of preserving the analytical properties needed to

ensure information redundancy in a moment set.

Moments, however, will not be used in this study. While moments seem

to hold promise for efficient identification, it is based on analysing all of a

symbol’s pixels and representing it as a single set of features. It does not

leverage any information on what primitive shapes where used to construct

a symbol. Because the system being designed will have knowledge of the se-

quence and time that pixels are drawn, information on the primitive shapes

can be extracted. For this reason a different path that better leverages the

advantages of interactivity between the user and system, was followed.

2.6 Fluid Sketches

Figure 2.4: Fluid sketch

Fig. 2.4 shows an example of the behaviour of a prototype developed by

Arvo and Novins [26] as the user interacts with their system. In the top

CHAPTER 2. RELATED RESEARCH 14

row a roughly circular pattern is drawn by the user. With fluid sketching

enabled (middle row), the very same trajectory continuously morphs toward

the least-squares circle. When the viscosity is decreased (bottom row), the

morphing reaches the current optimal shape more quickly.

Their system morphs the user’s strokes according to an ordinary differential

equation to fit a predicted shape. First the optimal shape from each class

is found. The optimal class is then selected as the prediction by comparing

the least-squares errors between these shapes. This is relatively easy for

classes such as circles and polygons, however, for more complex shapes such

as spirals, determining a least-squares error is non-trivial. Also, finding a

drawn point’s corresponding position on the predicted shape becomes much

more difficult.

The interactivity afforded by this system is, however, very pleasing [26] and

attempts are made in this study to duplicate a similar effect using a different

method of primitive identification.

2.7 Research Summary

The majority of strategies for on-line schematic recognition involve segment-

ing strokes according to curvature and temporal information, approximating

these segments with primitive shapes (lines, arcs, etc.), clustering primitives

together into symbols and then comparing the unknown symbols to stored

symbol definitions.

Due to possible variance in stroke ordering, HMMs were not further ex-

plored. Graph matching is, however, used in this study to determine primi-

tive mappings, which is necessary for calculating symbol rotations and port

mappings. While moments could possibly be used, a different path that bet-

ter leverages the advantages of interactivity between the user and system,

was followed.

CHAPTER 2. RELATED RESEARCH 15

The recognition algorithm developed in this study is a refinement on work

done largely by Gennari (intersection features) and Novins et al. (fluid

sketches), and is closely related to work done by Alvarado (glyph language).

The design of the system will be discussed in Chapter 3.

Chapter 3

Prototype Development

This chapter will detail the design of a system conforming to the stated

requirements.

3.1 System Requirements

NioCAD is an electronic CAD environment being developed by Retief Ger-

ber at Stellenbosch University. It was decided to design a prototype system

that would be able to interpret a circuit, sketched on a pen-based device, as

well as possibly serving as an interface layer on top of NioCAD. With the

vision of eventually integrating this recognition engine with NioCAD, some

requirements had to be met:

• It was decided that the system must be able to differentiate between

at least ten different symbols (listed in Section 3.6).

• The system should be able to learn from only one example of each

component. This would allow users to easily define custom component

symbols without having to provide a large number of examples.

16

CHAPTER 3. PROTOTYPE DEVELOPMENT 17

• Due to its interactive nature, a fast recognition algorithm is vital to

the system’s usability.

3.1.1 Stroke Interpretation

Many existing on-line recognition systems (see Chapter 2) do not provide

user feedback on strokes until a recognition command is issued, after which

the user is typically required to correct mistakes made by the engine. By

continuously supplying feedback to the user on the recognition of primitive

shapes, the user’s response could be used for implicit verification. This

would lessen the need for this error-correcting stage.

This feedback is made possible by continually updating the identified prim-

itive as the stroke is being made. The decision on the primitive is made

final when the user lifts the pen. The user’s strokes are then replaced by the

primitive. By continuously updating the primitive as the stroke is made,

the system is implicitly verifying the identification of the primitive. A sim-

pler primitive identifier could therefore be used than would otherwise be

required.

3.1.2 Primitive Interpretation

It is assumed that only one symbol is drawn at a time. After the primitives

needed to construct a symbol have been drawn, the user is required to issue

a “recognise component” command. This action is triggered from a drop

down menu or by pressing a button. This command will group together

the primitives and pass it to a second stage where the symbol is matched

against definitions stored in a database.

An electronic component has nodes which can be connected to other com-

ponent nodes (generally called “ports”). Connections between these ports

are made by drawing a stroke starting at the one port and ending at the

other.

CHAPTER 3. PROTOTYPE DEVELOPMENT 18

3.1.3 Recognition Stages

Fig. 3.1 pictures a simplified example of the steps such a recogniser should

follow. The system is required to convert a user’s pen stroke into one of a few

primitives (e.g., lines, arcs and circles) as it is being drawn and displayed

on the screen. These primitives should then be clustered together, and

identified as a specific symbol representing an electronic component.

These recognised symbols are then analysed for rotation and port map-

ping information. Two symbol ports can be connected together by simply

drawing a stroke starting at the one port and ending at the other.

Figure 3.1: Simplified example of recognition steps: (a) Stroke capture, (b)

primitive identification, (c) primitive clustering and (d) symbol recognition.

3.2 Design Overview

A simplified data flow diagram for the proposed design is given in Fig. 3.2.

The recognition algorithm relies on a few basic assumptions:

• A symbol is constructed from a set of drawn primitives.

• A single primitive is represented by a single pen stroke.

• One symbol is drawn at a time and completed before the next one is

started.

CHAPTER 3. PROTOTYPE DEVELOPMENT 19

stroke

identify

primitive

display

primitive

p
r
i
m
i
t
i
v
e
s

clustering

recognition

primitive capturing

symbolprimitives

symbolprimitives

symbolprimitives

Figure 3.2: Simplified data flow diagram.

• Symbols are drawn and recognised before connections between their

ports are made.

These restrictions are seen as acceptable as they appear to superficially

correspond to the typical user’s drawing style. Some of these restrictions

are, however, relaxed significantly through the use of the Corner primitive

and clustering discussed in Section 3.5.

3.3 Stroke Capture

A stroke is represented as a collection of points and corresponding time

information. More specifically, the output of this capturing stage is a list

of sampled points (x-coordinate, y-coordinate and time) which is passed on

to the primitive identification stage.

Simply capturing information from “mouse-move” events does not, however,

deliver consistent results over different platforms (such as desktop systems

and Tablet-like input devices). This is due to the temporal resolution being

CHAPTER 3. PROTOTYPE DEVELOPMENT 20

inconsistent on some platforms. Like Calhoun [18], a simple mouse position

sampler that queries the mouse’s position over fixed intervals, was written to

compensate for these differences. Running the sampler at 50Hz was found

to provide sufficient information to the primitive identification stage.

3.4 Primitive Identification

As a stroke is made, the system attempts to identify the primitive being

drawn. A selection is made from a set of primitive types (Line, Jagged,

Corner, Crescent, Spiral or Circle) built from the points collected from the

stroke thus far, and drawn to the screen. The various primitive types are

shown in Fig. 3.3. The selected primitive is recalculated and redrawn with

each additional point collected. When the pen is lifted the selection is

finalised.

Figure 3.3: The various primitives and their snap points. Line, Jagged,

Corner, Crescent, Spiral and Circle.

This method is similar to the one employed by Arvo and Novins (see Section

2.6). However, instead of directly comparing the least squares errors of the

primitives, a different primitive identification strategy is used.

In this study a vector of features is extracted from the points collected from

a stroke. This feature vector is compared against those of a training library

CHAPTER 3. PROTOTYPE DEVELOPMENT 21

of stored primitives.

From a stroke’s ordered set of points ({p1..pN}), the following properties

are derived for use as feature vector dimensions. These features (except for

c and d) are also normalised against the length of a line estimate and then

upper bounded to the maximum value indicated.

a) average deviation of points from line estimate. Maximum 2 units.

fa({p1..pN}) =
N−1∑
n=2

distance(pn, line estimate(p1, pN))

N − 2

b) average deviation of points from two-line (corner) estimate. Maximum

0.5 units.

fb({p1..pN}) = min({C1..CN})

where

Cx =
fa({p1..px}) + fa({px..pN})

2

c) average distance from radius of least-square’s estimated circle, nor-

malised against radius. Maximum 0.5 units.

fc({p1..pN}) =
N∑

n=1

|(||pn − c|| − r)|/r
N

d) average of angular changes between points (angular changes below π
16

are ignored).

fd({p1..pN}) =
N∑

n=2

(angle(pn − pn−1)− angle(pn−1 − pn−2)) mod π

N − 1

e) total stroke curvature length. Maximum 3 units.

fe({p1..pN}) =
N∑

n=2

||pn − pn−1||

To populate the library, more than 100 examples of each primitive type

were collected from five people. The question as to whether this is an

CHAPTER 3. PROTOTYPE DEVELOPMENT 22

adequate sample to recognise more diverse drawing styles, can be raised.

This question is not addressed in this study other than the results provided

in Chapter 4. It was assumed that this will provide sufficient information

to identify input from any other users.

Each primitive type from the training library is represented by a diag-

onal1 Gaussian probability density function (PDF). Fig. 3.4 shows his-

tograms of selected feature distributions for some example primitives. A

naive Bayesian2 classifier is then used to find a match between the drawn

stroke and primitive type.

This recognition process can sometimes yield awkward results such as a cir-

cle with an abnormally large radius when a line is expected. The constructed

primitives therefore also have the ability to “opt-out” of this selection pro-

cess when it detects strange properties about itself. These properties are

listed in Section 3.4.1. Primitives also opt-out if their curvature length dif-

fers from that of the drawn stroke beyond a certain margin. If all primitives

opt-out, the system defaults to a Line primitive.

Drawing multiple primitives with a single stroke is supported to a limited

degree through the use of a “corner” pseudo-primitive. Identification of a

corner element is done the same as identification of other primitives, but

afterwards is split into two line primitives to form a V or L shape. The de-

viation between a stroke and a corner primitive is calculated as the average

deviation from the stroke and two line segments. The decision on where

to segment the stroke is made by considering all points in the stroke and

selecting the one that creates the smallest deviation. This is currently done

using a linear walk through the points, but can be improved by employing

a binary search.

By converting user strokes into primitives as they are drawn, immediate

feedback on the quality of segmentation is given to the user who is then

able to correct it. This approach has both advantages and disadvantages.

1A single mean and variance for each dimension.
2See Appendix A for an introductory tutorial.

CHAPTER 3. PROTOTYPE DEVELOPMENT 23

0

1

Circle

0

1

Corner

0

1

Crescent

0

1

Jagged

0

1

Line

0.0 0.5 1.0 1.5 2.0
0

1

Spiral

(a) deviation of points from line estimate

0

1

Circle

0

1

Corner

0

1

Crescent

0

1

Jagged

0

1

Line

0.0 0.1 0.2 0.3 0.4 0.5
0

1

Spiral

(b) deviation of points from corner estimate

0

1

Circle

0

1

Corner

0

1

Crescent

0

1

Jagged

0

1

Line

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

1

Spiral

(c) distance from radius of estimated circle

0

1

Circle

0

1

Corner

0

1

Crescent

0

1

Jagged

0

1

Line

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

Spiral

(d) angular changes between points

0

1

Circle

0

1

Corner

0

1

Crescent

0

1

Jagged

0

1

Line

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

Spiral

(e) stroke curvature length

Figure 3.4: Histograms of features extracted from primitive examples.

CHAPTER 3. PROTOTYPE DEVELOPMENT 24

It is hoped this will provide a high quality input to the recognition stage

and therefore a simpler classifier, but it also requires more user interaction.

This also pushes most of the variability to primitive recognition stage.

Fig. 3.3 also shows the snapping points associated with the primitive types.

“Snapping points” are locations on primitives that are more likely to have

another primitive starting or stopping at that point than any other location

in the vicinity. The start and end of a user’s stroke can thus be modified to

fall exactly on these points if close to one of these points. More specifically,

a primitive is snapped to one of the points if its snapping points are within

a certain range of another snapping point. Snapping is important to differ-

entiate between symbols that can look the same if drawn roughly, such as

the diode and box.

Snapping is not done on strokes with short curvature lengths as this would

transform a high percentage of the stroke points and thus interfere with

the primitive recognition. Note also that the circle does not have any snap

points as no point on the circumference is more likely to have a primitive

starting or stopping on them than any other point on the circumference. It

could be argued that any point on the circumference (as well as the center

point) is more likely than any other location, outside or inside the circle,

to have a starting or ending primitive. This is, however, not true for the

circuit component symbols being considered and was found to be more of

an irritation than a help when drawing symbols such as the dc-source.

3.4.1 Opt-out parameters

This subsection will briefly summarise conditions under which primitives

decide to opt-out of the recognition process. Many of the exact parameter

values are based on experimental observations. The primitives indicated

between brackets are those more likely to have been drawn under the men-

tioned opt-out condition.

CHAPTER 3. PROTOTYPE DEVELOPMENT 25

Circle : unnaturally large radius (long Line) or very small angular segment

(short Line)

Crescent : unnaturally large radius or very small angular segment or

small curvature length (Line)

Corner : one of constituent lines decide to opt-out or their intersection

does not form a V or L (single Line) or their length ratio is larger

than 5:1 (Line).

Jagged : small (Line) or very large variation from line estimate or too

short (Line)

Line : large variation from line estimate

Spiral : small (Line) or very large variation (Circle or Crescent) from line

estimate or too short (Line)

It can be observed that many times, although not always, when a primitive

decides to opt-out the actual primitive that was drawn was in actual fact a

Line. For this reason it was decided that if all primitives decide to opt out

of the decision process, the primitive should default to a Line.

3.5 Primitive Clustering

Primitives need to be grouped together to form symbols. The simplest and

most dependable way is to require the user to issue a “recognise” command

before the next symbol is drawn. This can be disruptive to the user’s ex-

perience. Instead, primitives can be automatically clustered together based

on the order and position in which they were drawn.

Clustering is frequently based on marker symbols and nearest neighbour

groupings [8]. A similar, albeit simpler, technique is followed by this system.

CHAPTER 3. PROTOTYPE DEVELOPMENT 26

Figure 3.5: Clustering example.

Each primitive is first represented by a corresponding feature vector: the

x and y coordinates of the primitive’s midpoint, and the time the prim-

itive was drawn. These three features are based on the observation that

primitives are not only grouped together in physical proximity, but also in

time.

The system groups these points (and thus primitives) together using mul-

tiple runs of the k-means algorithm.

The k-means algorithm works by initially partitioning the feature points into

k sets (randomly or heuristically determined). The centroids (mean points)

of these sets are calculated and the feature points re-assigned to their closest

centroids. This process is repeated until points no longer switch between

clusters.

The k-means algorithm requires a value for k, the number of clusters (i.e.,

symbols) to form. The algorithm is thus re-run with values for k ranging

from one up to the number of primitives, stopping when forming more

clusters does not yield a significantly smaller error.

This still, unfortunately, requires the user to draw symbols and issue a

recognise command before being able to form connections between them.

CHAPTER 3. PROTOTYPE DEVELOPMENT 27

3.6 Symbol Recognition

Drawn symbols are compared against a library of known definitions to find

a likely match. The symbol definitions can be seen in Fig. 3.6.

(a) and (b) bjt (c) box

(d) buffer (e) cap (f) dc-source

(g) diode (h) inductor (i) junction

(j) nand (k) nor (l) not

(m) or (n) resistor

Figure 3.6: Symbol definitions.

Representing symbols by a set of primitives instead of pixels, effectively

transforms the recognition problem from one of matching raster-based im-

ages to that of comparing vector-based graphics. This significantly simplifies

the symbol recognition.

CHAPTER 3. PROTOTYPE DEVELOPMENT 28

Table 3.1: Intersection types.

intersection type intersection location intersection angle

V endpoint-to-endpoint ≈ 45o

L endpoint-to-endpoint ≈ 90o

y midpoint-to-endpoint ≈ 45o

T midpoint-to-endpoint ≈ 90o

X midpoint-to-midpoint ≈ 45o

+ midpoint-to-midpoint ≈ 90o

= none parallel

| none ≈ 0o

I any ≈ 0o

3.6.1 Primitive Intersections

Many of the algorithms used in the system depend on knowledge about

intersections between primitives. The location of intersection, the angle be-

tween primitives and the part of the primitives intersected, are all important

properties used by the intersection classifier discussed later. The mathe-

matical algorithms used to find intersection information are summarised in

Appendix B.

Information on intersections between primitives are generalised into various

intersection types according to a simple rule-based system, as summarised

in Table 3.1. X and + intersections happen when primitives cross close to

eachother’s midpoints; V and L when they intersect near their endpoints,

at an angle; T and y when midpoint and endpoint intersect; and I when

they intersect, but not at a significant angle. | and = represent relationships

between primitives when they do not intersect, but are co-linear or parallel.

This is similar to the technique employed by Gennari and described in

Section 2.1. However, their method contains only limited information on

the relationship between non-intersecting primitives.

Fig. 3.7 shows an example of some of the extracted intersection types made

CHAPTER 3. PROTOTYPE DEVELOPMENT 29

VT

VVVTyy

V

V, T, V, VVVTyy

Figure 3.7: Analysis of primitive intersections for a diode symbol.

between the primitives that make up a diode symbol. L-intersections are

illustrated later on in the box example in Fig. 3.9.

Because only a few of the symbols to be recognised contain circles, it was

decided to ignore information on intersections between circles and any other

primitives. Merely the count of the circles should be adequate in differenti-

ating between those with and without circles.

3.6.2 Symbol Classifiers

A cluster of primitives is classified as a specific symbol type by taking

the majority vote of two classifiers: a simple recogniser, built on primitive

counts, and an intersection-based recogniser. Through experimentation it

CHAPTER 3. PROTOTYPE DEVELOPMENT 30

was found that better results are obtained by providing the primitive-count

based classifier with two votes.

The results of these classifiers could be fused together in a more sophisti-

cated way, but this simplified approach was found sufficient for the purposes

of this study after seeing the results discussed in Chapter 4. Conceptually

the simple feature classifier does a rough classification and the full feature

classifier incorporating intersection features are used to specialise.

Primitive-count based Recogniser

An elementary representation of a symbol can be found by forming a vector

of the number of primitives. E.g. a nor -gate consists of 6 primitives: 3

lines, 2 crescents and one circle or 〈6, 3, 2, 1〉; while an and -gate consists of

5 primitives: 4 lines, 1 crescent and 0 circles or 〈5, 4, 1, 0〉.

It should be noted that this representation does not provide enough in-

formation to differentiate between some symbols such as diodes and boxes

(both having 6 primitives, all lines) or bjts (Fig. 3.6(b)) and crystals (8

primitives, all lines). Information concerning the relative arrangement and

connectivity of primitives is therefore also taken into account.

Intersection-based Recogniser

This recogniser is based largely on work touched upon by Gennari et al. [9].

To classify a symbol, a feature vector is constructed containing information

on its intersecting primitives. A naive Bayesian classifier3 is then trained

against a set of symbol examples and used for symbol classification.

Analysis of training data (See Fig. 3.8), however, suggests a Gaussian

distribution, as was used by Gennari, might not be the best model for this

data set. The vector elements are always positive integers and concentrated

3See Appendix A for an introductory tutorial.

CHAPTER 3. PROTOTYPE DEVELOPMENT 31

0

diodebox bjt

lines

X’s

L’s

T’s

V’s

y’s

2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Figure 3.8: Histograms of selected features for box, diode and bjt.

close to the mean (with no deviation in many cases). Better results are

obtained if a discrete probability density function is assumed. This is the

same as constructing a histogram of the training data’s features.

An example will demonstrate how this feature vector is constructed.

Example: Analysis of the box in Fig. 3.9 yields the geometric properties

shown in the table. A simplified form of the vector is then the first column

or 〈6, 6, 0, 0, 2, 0, 4〉.

There are however more intersection (Table 3.1) types than shown in the

example. A count for each of the 9 intersection types, a count for each

of the 5 primitive types (a Corner is converted to two Lines) and a total

primitive count all contribute to form a vector of 15 elements.

CHAPTER 3. PROTOTYPE DEVELOPMENT 32

number name

6 total primitives

6 line primitives

0 crescent primitives

0 circle primitives

2 T intersections

0 X intersections

4 L intersections

Figure 3.9: An example of a box, its primitive intersections and selected

features.

3.6.3 Training Data

It is preferable to only require one definition for each symbol rather than

prompting the user to provide a multitude of examples for each symbol.

For this reason training data is generated by mutating a single definition of

each symbol. These mutations are meant to simulate variability introduced

by the user.

For each desired example of a symbol, points in the symbol definition are

mutated by adding a Gaussian error. Snapping is then applied to the prim-

itives to imitate corrections made by the user interface (Section 3.4).

The symbol recognition stage can be made more robust against misiden-

tification by the primitive identification stage. These errors are simulated

by measuring the accuracy and misidentification tendencies of primitives

and applying these type-mutations to generate more representative train-

ing data. Examples of the mutations produced by this process can be seen

in Fig. 3.10.

Generating training data according to the previous steps can yield rather

extreme variations from the definition files. It is unreasonable to expect the

CHAPTER 3. PROTOTYPE DEVELOPMENT 33

Figure 3.10: Symbol definitions (leftmost column) and examples of gener-

ated mutations. Symbols in red where identified by the initial classifier as

“unreasonable”.

CHAPTER 3. PROTOTYPE DEVELOPMENT 34

system to train on these extremes and still produce accurate results.

symbol

definition

mutations

training

filtering
training

final

classifier

initial

classifier

Figure 3.11: Identification of “reasonable” mutations for training a final

symbol classifier.

A set of mutations is therefore used to create an initial rough symbol recog-

niser. Another set of generated mutations is then filtered by a run through

this naive classifier. If a mutation is correctly identified by this classifier, it

is expected to be a “reasonable” example of the symbol.

These reasonable mutations are then used to train the combined classifier

described in the previous subsection. This process of filtering out “unrea-

sonable” training data is illustrated in Fig. 3.11

3.7 Symbol Properties

3.7.1 Primitive Mapping

After a group of primitives is recognised as a specific symbol from the

database, it is necessary to know which primitive represents which part

of said symbol. This information is needed to determine the rotation and

port locations of the symbol.

The group of primitives drawn by the user can be represented as a graph

where primitives act as nodes and edges relate the intersection features.

CHAPTER 3. PROTOTYPE DEVELOPMENT 35

This converts the problem into one of finding an optimal node mapping (or

morphism) between the graphs of the drawn symbol and symbol definition.

Inexact graph matching is a computationally expensive process (see Section

2.4). Because this information is needed during time-critical parts of the

user’s interaction, a very simple method of determining a mapping is used.

A primitive is represented by a feature vector consisting of

• the number of intersections with other primitives

• the normalised distance of the primitive from the symbol midpoint

• the normalised size of the primitive

This feature vector is then used in a naive Bayesian classifier with a diagonal

Gaussian probability density function to match up primitives between the

symbols.

The drawn symbol is not compared only to the symbol definition, however.

Several mutations of the symbol definition are used instead to compensate

for too clinical definitions. Two lines might, for example, be exactly parallel

according to the definition, but might lose this property very easily when

drawn by a user.

The results of these matchings are then combined using a majority vote.

3.7.2 Symbol Rotation and Translation

Information on symbol rotation and translation is needed to correctly draw

component ports in the correct locations4.

If each primitive’s point set (xn, where xn is (x, y) coordinate) is rotated

and/or reflected (Rn) around the symbol’s center point (m), uniformly

4For a comparison of different methods of estimating rigid body transformations see

[27].

CHAPTER 3. PROTOTYPE DEVELOPMENT 36

scaled (Sn) and translated to around a different center point (p), to form a

new point-set (x′
n) the transform can be modelled as

x′
n = Tn(xn −m) + p, (3.1)

where

Tn = SnRn (3.2)

with Sn a positive-definite diagonal matrix, and Rn a unitary matrix.

Assuming the same transform for all primitives yields a simpler overdeter-

mined result:

x′
n ≈ T (xn −m) + p + n(t) (3.3)

where T is the generalised transform and n(t) is Gaussian noise added to

compensate for the assumption.

Since m and p is known, T in (3.3) can be approximated by employing

an estimation algorithm such as least-squares. However if the primitive

mapping is not known and can only be estimated (Section 3.7.1), a robust

estimation technique has to be used to derive meaningful information as

linear least squares is very sensitive to outlier data which can occur due to

incorrect mappings.

To address this the least-squares estimate is recalculated, ignoring points

assumed to be outliers. These outliers are identified as those whose squared

residual error differs more than the average squared residual assuming all

points contribute equally to the total error.

The general transform, T , is then further factorised into (3.4) using singular

value decomposition (SVD).

T = R1SR2 (3.4)

SVD yields the 2x2 unitary matrices R1 and R2, along with S, a 2x2 matrix

with non-negative numbers on the diagonal and zeros off the diagonal5. R1

5See Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Singular

value decomposition

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Singular_value_decomposition

CHAPTER 3. PROTOTYPE DEVELOPMENT 37

and R2 are then rotation/reflection effects and S a scaling in the x and y

directions.

Since the scaling of the symbol is not used by the system; the scaling influ-

ence of S is removed to produce a pure rotation/reflection transform:

R = R1R2. (3.5)

The rotation angle (θ) and whether a reflection occurred (f) can then be

modelled as the resulting R, a 2x2 unitary matrix:

R =

[
f 0

0 1

] [
cos θ − sin θ

sin θ cos θ

]
=

[
r1 r2

r3 r4

]
(3.6)

where

f =

{
−1 if reflection

1 if no reflection
(3.7)

From (3.6) it is then possible to derive θ and whether there was a reflection:

r4 = cos θ (3.8)

det R = f · (cos2 θ + sin2 θ) = f (3.9)

These results determine the orientation in which the component was sketched

and how to rotate and/or reflect the corresponding definition to be displayed

on the screen.

3.8 Interface

Because the system depends heavily on user interaction, accuracy in deter-

mining what was implied by the user depends as much on the quality of the

user interface as the quality of the component recognition algorithms. Fig.

3.12 shows an example view of the developed interface.

Tablets typically have a “drawing” mode where the keyboard rotates behind

the screen and the user interacts exclusively by means of a pen device. This

CHAPTER 3. PROTOTYPE DEVELOPMENT 38

Figure 3.12: Interface example

limits the user to clicking, secondary clicking (sometimes with a button on

the side of the pen) and dragging motions. The interface had to be carefully

designed to allow the multitude of instructions the user wants to issue when

drawing. The state diagram is pictured in Fig. 3.13.

This allows the user to draw using the left mouse button and move/rotate

symbols with the right. For a pen/tablet based system this translates to

normal pen mode and the pen secondary mode (usually enabled by pressing

a button on the pen device).

The interface differentiates between move and rotation actions by determin-

ing which is closer when the command was issued: a symbol’s midpoint or

a port.

When the pen is lifted the user is also informed in the status bar of clustering

information and what the current primitives will be recognised as in the

CHAPTER 3. PROTOTYPE DEVELOPMENT 39

Select Component

StartSketching

Sketching

StopSketching

StartMoving

Moving

RightClicked

PopUpMenu

LeftClicked

PenMotion

RightDown

RightUp

LeftUp

PenMotion

LeftDown

RightUp

PenMotion

PenMotion

Figure 3.13: State machine diagram of interface reaction to user events.

event that the “recognise” command is issued. This not only allows the

user to stop drawing when the system has enough information, but also,

and more importantly, prevents the irritating loss of all primitives in case

of incorrect recognition.

CHAPTER 3. PROTOTYPE DEVELOPMENT 40

3.9 Design Summary

For readability the design and implementation is presented in such a way as

to imply that a segmented process of research and development was under-

taken; this was not the case. The development of a recognition engine was

largely an experimental process. Ideas were roughly thought through, imple-

mented, tested, removed if applicability seemed questionable and sometimes

later integrated back into the system.

3.10 Implementation

This section briefly discusses the development methodology followed and

tools used to implement a prototype of the proposed design. Some finer

points on the implemented system will also be discussed briefly.

Note that Appendix C contains simplified diagrams and tables of the classes

and files related to the system.

3.10.1 Tools

With only a single developer, tools were needed that allowed rapid devel-

opment. The development tools also needed to facilitate an exploratory

coding style, which is necessary for effective research.

The system was designed and developed over a period of 18 months, exten-

sively using a version control system and a multi-paradigm programming

language.

Programming language : The system was implemented using Python

2.46 and totals around 4500 lines of code, excluding libraries. Python

6http://www.python.org/

CHAPTER 3. PROTOTYPE DEVELOPMENT 41

is an interpreted dynamically typed programming language with auto-

matic memory management and was chosen for its rapid development

nature and focus on being fun to use.

Scientific libraries : Numarray is used in many places especially when

determining component rotation and representing probability density

functions with Gaussian distributions. Numarray’s k-means cluster-

ing algorithm was used in the initial phases of design but eventually

replaced with Pycluster’s7 implementation for performance reasons.

Graphs are represented by a modified version of the pygraphlib8 library,

which is unfortunately no longer maintained

Version control : A Subversion9 repository was used extensively. This

mitigated the risk that comes with the continuous experimentation

with source code needed for this research.

Graphics Library : An interface was built around the wxPython10 Float-

Canvas component. This allowed easy conversion between screen and

world coordinates.

Database : Primitive and symbol examples where captured and stored in

XML structured files. This made it possible to edit data files by hand

if need be.

Graphical Analysis : Matplotlib11 is used to produce plots for visual

statistical analysis.

Development Environment : SciTE12, a lightweight and customisable

text editor was used. This allowed the dedication of computer re-

sources to the interface and algortihm design.

7http://bonsai.ims.u-tokyo.ac.jp/ mdehoon/software/cluster/software.htm
8http://pygraphlib.sourceforge.net/
9http://subversion.tigris.org/

10http://www.wxpython.org/
11http://matplotlib.sourceforge.net/
12http://www.scintilla.org/SciTE.html

CHAPTER 3. PROTOTYPE DEVELOPMENT 42

3.10.2 Implementation Methodology

Because the prototype development is primarily research driven and the

solution would not be clear until later, the design decisions are very much

dependent on the results of the implementation’s recognition abilities. This

had the effect of making the development very much an exploratory under-

taking.

Knowledge of the problem increased as the prototype was implemented,

parts were exchanged for different algorithms and functionality was moved

from one area of the system to another to improve performance. This made

any kind of large up-front design rather irrelevant, as it would most likely

be changed as the system grew.

One way of managing these changes is by refactoring often [28]. This in-

volves restructuring code into a better architecture.

Because Python classes are mutable, refactoring is slightly more difficult

than in other statically typed languages13. Refactoring tools such as Bicycle

Repair Man14 have been developed to help with this, but tests are still

needed to ensure code does not break during refactoring.

Unit tests (specifically doctests15) were written for some of the basic func-

tions. Exhaustive unit tests, however, were avoided for most of the system

as it would have duplicated code that would have to change often. Instead,

it was decided to automate the recognition of example data to exercise the

code base. With sufficient code coverage and sanity checks through the

source (i.e. asserts) it was hoped many of the faults would be discovered as

they are introduced. These tests were run regularly, typically several times

a day.

It is generally believed that state coverage is superior to code coverage [28].

It is the author’s opinion, however, that state coverage is less important

13http://c2.com/cgi-bin/wiki?PythonRefactoringBrowser
14http://bicyclerepair.sourceforge.net/
15http://docs.python.org/lib/module-doctest.html

CHAPTER 3. PROTOTYPE DEVELOPMENT 43

in Python than other languages. As Python typically processes collections

(such as lists) using an iterator and not incrementing indices, there are less

ways in which out of bounds errors can occur. Since variables also need not

be declared it is also less likely that null pointers would be dereferenced.

This is, for example, one of the most frequent sources of errors in the Java

programming language [29].

3.10.3 Data Formats

Data used by the recognition engine was stored primarily in XML formatted

files. This section will briefly illustrate the structures and how they relate

to NioCAD’s data representation.

Symbols and Primitive XML files have the same structure: a drawing con-

sisting of various primitives and each primitive consisting of a set of points.

The following fragment demonstrates the definition of a dc-source symbol.

Note that the symbol definition also contains information on the port loca-

tions.

1 <drawing author="janto" host="janto" date="Mon Feb 06 13

:29:02 2006">

2 <pr im i t i v e type="Circle">

3 <point x="-216.75" y="96.83" time="0" />

4 <point x="-211.24" y="93.78" time="0" />

5 . . .

6 <point x="-216.75" y="96.83" time="0" />

7 </ p r im i t i v e>

8 <pr im i t i v e type="Line">

9 <point x="-240.0" y="90.0" time="36.74" />

10 <point x="-240.0" y="50.0" time="37.14" />

11 </ p r im i t i v e>

12 . . .

13 <por t s>

14 <point x="-240.0" y="180.0" time="83.82" />

15 <point x="-240.0" y="-60.0" time="58.94" />

CHAPTER 3. PROTOTYPE DEVELOPMENT 44

16 </ por t s>

17 </drawing>

The component properties.xml file specifies the number of ports and SPICE

information for each component type:

1 <components>

2 <component name="resistor" s p i c e l a b e l="R" va lue s="1k" />

3 <component name="inductor" s p i c e l a b e l="L" va lue s="1u" />

4 <component name="capacitor" s p i c e l a b e l="C" va lue s="1n" /

>

5 <component name="bjt" s p i c e l a b e l="Q" port count="3"

va lue s="100" />

6 . . .

7 <component name="buffer" s p i c e l a b e l="B" va lue s="" />

8 <component name="nand" port count="3" s p i c e l a b e l="X"

va lue s="" />

9 <component name="and" port count="3" s p i c e l a b e l="X"

va lue s="" />

10 <component name="not" port count="2" s p i c e l a b e l="X"

va lue s="" />

11 </components>

As NioCAD was still under development during the design of this prototype,

NioCAD has its own representation of the same information:

1 <Type>

2 <Spice name="capacitor" basetype="PartType" module="

StdTypes">

3 <PartType>

4 <PortType>

5 <ComponentType>

6 < i d e n t i f i e r>C</ i d e n t i f i e r> <name>Capacitor</name

>

7 </ComponentType>

8 <Node a l i a s e="p" /> <Node a l i a s e="n" />

CHAPTER 3. PROTOTYPE DEVELOPMENT 45

9 </PortType>

10 <PropertyType>

11 <name>value</name> <value>0</ value>

12 <PropertyOptionsType> <showname> f a l s e</showname> <

r equ i r ed>t rue</ r equ i r ed> </PropertyOptionsType>

13 </PropertyType>

14 </PartType>

15 </ Spice>

16 <Symbol name="capacitor" basetype="SchemSymbol">

17 <Line> <Point><x>−50</x><y>−10</y></Point> <Point><x>

50</x><y>−10</y></Point> </Line>

18 . . .

19 <Line> <Point><x>0</x><y>10</y></Point> <Point><x>0</x

><y>80</y></Point> </Line>

20 <Pin> <Point><x>0</x><y>80</y></Point> <Point><x>0</x>

<y>100</y></Point> </Pin>

21 <Pin> <Point><x>0</x><y>−80</y></Point> <Point><x>0</x

><y>−100</y></Point> </Pin>

22 <Node a l i a s e="p"> <Point><x>0</x><y>−100</y></Point> <

/Node>

23 <Node a l i a s e="n"> <Point><x>0</x><y>100</y></Point> </

Node>

24 </Symbol>

25 </Type>

The difference in representation is, however, largely structural and should

therefore be possible to eliminate easily.

Chapter 4

Evaluation

In this chapter the prototype described in the previous sections is eval-

uated to prove the viability of the proposed design. The quality of the

implemented system is explored with regards to its recognition accuracy,

performance and usability.

4.1 Recognition Accuracy

The system’s ability to interpret a user’s strokes depends on its accuracy in

identifying primitive shapes and component symbols.

The engine was primarily tested against procedurally generated data, but

also against data informally collected from a small group of users.

A classifier’s recognition tendencies can be represented by confusion matri-

ces, where columns represent instances in the predicted class and each row

represent instances in the actual class. It is then relatively simple to see

how classes are confused by a classifier. These matrices are shown in Table

4.2 and Table 4.5.

46

CHAPTER 4. EVALUATION 47

Table 4.1: Primitive example set size

Primitive type Number of examples

Circle 175

Corner 99

Crescent 74

Jagged 43

Line 384

Spiral 111

Table 4.2: Primitive confusion matrix (values rounded down)

Circle Corner Crescent Jagged Line Spiral

Circle 91 0 5 0 3 0

Corner 0 96 4 0 0 0

Crescent 0 0 100 0 0 0

Jagged 0 0 0 91 4 4

Line 0 0 1 0 98 0

Spiral 0 0 0 0 0 100

Overall accuracy: 96%

4.1.1 Primitive Identification Accuracy

Although the accuracy of the primitive identification process is not vital as

the user implicitly verifies the result of the classifier, it can irritate the user

if the system is not consistent with its identification - continuously swapping

between primitive types while the stroke is being drawn.

A set of examples was acquired from five users for each primitive type. The

number of examples collected for each primitive type is indicated in Table

4.1. Holdout cross-validation, the simplest type of cross-validation, was

used: 75% of the examples was used to train the identifier (as described in

Section 3.4) while the rest was employed as a test set.

The results of this test can be seen in Table 4.2. With an average class

CHAPTER 4. EVALUATION 48

Table 4.3: Symbol example set size

and bjt box buffer capacitor dc-source diode inductor junction nand nor not or resistor total

eric 5 8 7 6 6 5 37

gerrit 5 2 6 6 2 21

janto 17 11 14 21 21 9 12 16 9 9 10 9 8 12 178

jvdh 5 6 12 13 4 4 6 4 8 6 8 76

mareliz 1 3 1 5

total 27 25 26 29 44 19 28 23 9 15 14 24 14 20

accuracy of 96% and a minimum of 91%, these results suggest that the

primitive identification process is quite accurate in differentiating between

shapes.

4.1.2 Symbol Recognition Accuracy

By breaking down recognition into two separate stages with the user im-

plicitly verifying the results of the primitive identification stage, input to

the symbol recognition stage can be quite close to the definition file.

It should be noted that symbols consisting of only one primitive (i.e., the

resistor and inductor) can, theoretically, be identified perfectly if the prim-

itive was correctly identified. Recognition of these symbols was, however,

intentionally left to the same classification strategy as other symbols. This

was primarily done to allow the classifier to be as generic as possible.

The symbol recogniser was evaluated against component examples collected

from a few users and examples procedurally generated from the symbol

definitions.

User Drawn Symbols

A small (Table 4.3) test corpus of symbols was collected from a few students.

Classification accuracy results are displayed in Table 4.4.

While drawing symbols, many users expected the system to recognise a

larger range of polygons, particularly triangles and squares. After users

CHAPTER 4. EVALUATION 49

Table 4.4: Symbol example set classification accuracy

and bjt box buffer capacitor dc-source diode inductor junction nand nor not or resistor

eric 60 37 100 83 0 40

gerrit 80 0 0 33 50

janto 88 90 85 95 100 88 25 100 100 100 90 22 100 100

jvdh 60 33 91 92 100 25 83 100 12 83 75

mareliz 100 66 100

average 76 56 88 66 89 90 12 94 100 66 95 31 91 87

were shown the primitive types the system can identify and allowing them to

experiment with the system before collecting test data, recognition accuracy

improved significantly.

From Table 4.4 it is clear that the diode and not symbols were incorrectly

recognised most of the time. It is difficult to determine the reason behind

incorrect classifications from such a small example set. For this reason the

system was also tested against a large corpus of procedurally generated

symbol examples.

Automatically Generated Symbols

A test corpus containing 100 examples for each symbol was generated in

a way similar to the training data as described in Section 3.6.3, except for

not being filtered through an initial classifier. This avoids dependency on

the symbol classifier which would cause testing only data correctly classi-

fied. This unfortunately means some absurd mutations are tested against

the database. It should, however, be sufficient as only the classification

tendencies are to be determined and not the actual accuracy values.

Classification tendencies on the examples can be deduced from the con-

fusion matrix shown in Table 4.5. From this table it is clear to see that

although many symbol classes are correctly classified, the system easily

confuses diodes with boxes and nots with dc-sources.

Some roughly drawn symbols are inherently ambiguous and even difficult

for humans to classify. Fig. 4.1(a) shows a symbol that can be classified

CHAPTER 4. EVALUATION 50

Table 4.5: Symbol confusion matrix

and bjt box buffer capacitor dc-source diode inductor junction nand nor not or resistor

and 96 0 0 0 0 0 0 0 0 0 0 0 4 0

bjt 0 98 1 0 0 1 0 0 0 0 0 0 0 0

box 0 0 87 0 0 5 2 0 0 0 0 6 0 0

buffer 7 0 0 91 1 1 0 0 0 0 0 0 0 0

capacitor 1 0 0 0 95 1 0 0 3 0 0 0 0 0

dc-source 0 0 7 0 1 87 0 0 0 4 0 1 0 0

diode 0 0 59 0 0 2 29 0 0 0 0 10 0 0

inductor 0 0 0 0 0 0 0 96 0 0 0 0 0 4

junction 0 0 0 0 0 0 0 0 100 0 0 0 0 0

nand 0 0 0 0 0 0 0 0 0 85 9 6 0 0

nor 0 0 0 0 0 4 1 0 0 3 92 0 0 0

not 0 0 6 0 1 50 1 0 0 7 0 35 0 0

or 2 0 0 0 0 0 0 0 0 0 0 0 98 0

resistor 0 0 0 0 0 0 0 15 0 0 0 0 0 85

as either a diode or a box. The confusion between nots with dc-sources

is slightly more difficult to explain until one looks at the example in Fig.

4.1(b). Since the system does not use the relative size of primitives and any

information on the position and intersection of circles in its classification

process, this kind of confusion is to be expected.

(a) Confusion between box and diode. (b) Confusion between not and dc-

source.

Figure 4.1: Symbols easily confused.

CHAPTER 4. EVALUATION 51

4.2 Performance

The most noticeable performance issue is the delay experienced when the

system attempts to identify the drawn primitive. Because the system con-

tinuously recalculates and displays its interpretation of a user’s stroke and

heavy processor usage can interfere with the stroke sample rate, and by

extension quality of recognition, this part needs to be especially fast. After

profiling, it was determined that this delay is primarily due to the primi-

tive recogniser attempting to construct a Corner primitive from the points

drawn for the feature vector. This is processor intensive as the system does

a linear search through the points to find the optimal point to form the

bend. The search time can be reduced to logarithmic by doing a binary

search instead.

The training of the primitive classifier also takes a few minutes to run,

however, this is not an issue from the user’s point of view as the training

only needs to be done once and a cached version is used across program

runs. Optimising the construction of the Corner primitive, as discussed

above, will also significantly improve the training stage.

Surprisingly, training the symbol recogniser only takes a few seconds and is

fast enough to regenerate each time the program launches. This is primarily

due to using discrete probability functions in the naive Bayesian classifier,

and symbols with typically less than seven primitives which reduces inter-

section calculations.

4.3 Usability Analysis

After using the program to draw a few circuits, five users where asked to rate

the system’s accuracy, ability to draw circuits and their overall impression.

Requiring the user to issue a recognise command after every symbol was

found to be disruptive to the design process. In the design of electronic

CHAPTER 4. EVALUATION 52

circuits, groups of components form design patterns and are usually drawn

in fast “spurts” without necessarily thinking on the level of the individual

components. Interrupting the user after every component is drawn can

slow down and frustrate the designer who is trying to accomplish more

than simply experiment with the system.

There were several other recurring comments:

• Users especially enjoyed what they described as a natural way of ro-

tating and connecting up components.

• Many believe the system shows promise and would use it after refine-

ments where made.

• Users expected the system to identify various polygons such as rect-

angles and triangles.

• Complex symbols such as the bjts are significantly easier to draw with

the traditional drag-and-drop CAD interface.

• The clustering algorithm is not dependable when drawing larger cir-

cuits.

The issues mentioned here could be addressed in various ways, some of

which are discussed in Chapter 5.

Chapter 5

Recommendations and

Conclusions

Refinements to the system’s design in terms of its algorithm and interface

could be explored in a future study to improve the effectiveness of recognis-

ing hand-drawn circuit diagrams. This chapter discusses some suggestions

for further research and improvements that could be made. Some suggested

applications are also mentioned and this study is concluded in a summary.

5.1 Future Work

5.1.1 Algorithm Enhancements

Users of the system expected it to recognise polygons. This is approached

by others by segmenting strokes based on timing information. This would,

however, conflict with the jagged primitive, which is necessary for recognis-

ing a resistor’s symbol in circuit diagrams. Another option is to add addi-

tional pseudo-primitives similar to a Corner, such as Triangle and Rectangle

which would be decomposed into Line primitives after identification.

53

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 54

Some existing systems report positive results when using a pre-processor

to segment strokes into more than one primitive. Each stroke of the user’s

pen is segmented based on temporal and curvature information. Although

this study uses a corner pseudo-primitive, a more generic solution to enable

multiple primitives with single stroke (particularly lines) might be useful.

An improved clustering algorithm will improve the practicality of drawing

complete circuits. Together with intelligent primitive segmenting based on

domain knowledge, connecting wires between components (and thus com-

plete schematics) could even be drawn before issuing a recognition com-

mand. Hierarchical clustering should also be explored where primitives are

first grouped in time and then position.

Ports drawn close to each other could also automatically form connecting

lines.

Planar graph matching could be explored in more depth as a possible sym-

bol recognition strategy. The algorithm used in this study has theoretical

limitations when trying to differentiate between symbols that are almost

exactly the same, such as a pnp and npn bjt (i.e., arrow pointing inwards

or outwards).

Using various classification strategies and then fusing together the results

can produce better accuracy than the individual classifiers. It has been

shown that although there exists ambiguities within the results of an indi-

vidual classifiers, different classifiers are wrong in different ways and correct

in the same way. Combining pixel-based features such as moments, which

was mentioned in Section 2, to the classification engine should therefore

improve accuracy.

An easier way to incorporate moment information, and improve on the

accuracy of symbols that include circles, would be to simply add moment

features to the vector used for symbol recognition.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 55

5.1.2 Interface Enhancements

The pen sampler does not react immediately to user input on the tablet

PC. This is most likely due to using generic mouse events and not using the

Tablet API (wintab) directly.

Gestures such as scratching out a component could be introduced to further

simplify the user interface. A character recogniser could also be incorpo-

rated, so as to enable users to easily enter values associated with compo-

nents.

Going back and changing an already drawn component should be possible.

It might be desirable, for example, to change a buffer into a diode or an

NPN bjt into a PNP bjt symbol. This would also allow a user to fix errors

in classification.

Many of the interruptions and irritations in using the current system em-

anate from two of the requirements and assumptions made in Section 3.2:

• A single primitive is represented by a single pen stroke.

• One symbol is drawn at a time and completed before the next one is

started.

Two phenomena noticed by Oltmans et al. [30] directly contradict these

assumptions: 1) users do not always draw each object with a sequence of

consecutive strokes and 2) users drew more than one object using a single

stroke. Although the constraints imposed by these assumptions are relaxed

significantly by the prototype, more can be done.

This study only focused on one aspect of making the electronic design pro-

cess more intuitive. A study of user behaviour when drawing simple circuit

diagrams might prove very useful in this goal.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 56

5.2 Suggested Applications

The value of integrating the discussed recognition algorithms with an ex-

isting CAD system should be evaluated. Such a system could allow the

user to enter components in a hybrid manner. Such a system could, for

instance, use sketch recognition to trim the search space for a component

before requiring the user to select the desired component. A user could,

for example, sketch a diode symbol, after which a list containing a generic

diode, Zener diode and LED symbol is displayed for final selection. Such

a system would only be required to recognise a few basic components, e.g.

connections, resistors, capacitors, inductors, op-amps, diodes and boxes.

It would be interesting to explore multi-domain problems using the algo-

rithm employed. It is natural to consider the applicability of the symbol

recognition algorithm to matching larger graphs, as it is an important prob-

lem still open in computer science. It should be noted, however, that for a

symbol consisting of n primitives, n! comparisons are required to determine

all intersections. It therefore seems impractical for matching graphs with

many primitives such as ones representing fingerprints1.

5.3 Conclusions

This study explored the viability of using pattern recognition for schematic

capture of circuit diagrams.

To achieve this goal it was necessary to research work related to on-line

schematic recognition. An algorithm was then designed based on these

ideas. A prototype of a circuit recognition engine was also implemented to

demonstrate a possible approach.

The developed prototype was found to be reasonably accurate and usable

when drawing small circuits. Using this system, it is possible to draw sim-

1Although see [17] for reducing fingerprints into small attributed relational graphs.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 57

ple diagrams of electronic component symbols and connecting wires. It is

therefore possible to create a system that can be used to at least draw an

approximate circuit in the early design stages.

It should therefore be feasible to use a pen-based interface and underlying

recognition engine to capture circuit diagrams and thus provide an attrac-

tive early design environment for the engineer. This can be done by creating

a plug-in as an initial input stage to an existing CAD system such as Nio-

CAD.

Bibliography

[1] C. Alvarado, “A natural sketching environment: Bringing the computer into

early stages of mechanical design,” Master’s thesis, Massachusetts Institute

of Technology, May 2000. [cited at p. 2, 3]

[2] L. Wenyin, “On-line graphics recognition: State-of-the-art.” in GREC 2003:

5th IAPR International Workshop on Graphics Recognition, 2003, pp. 291–

304. [cited at p. 3]

[3] L. B. Kara and T. F. Stahovich, “Hierarchical parsing and recognition of

hand-sketched diagrams,” ACM Symposium on User Interface Software and

Technology (UIST), 2004. [cited at p. 6, 7]

[4] T. Hammond and R. Davis, “Tahuti: A geometrical sketch recognition sys-

tem for uml class diagrams,” Papers from the 2002 AAAI Spring Symposium

on Sketch Understanding, pp. 59–68, March 25-27 2002. [cited at p. 6]

[5] C.-L. Liu, S. Jaeger, and M. Nakagawa, “Online recognition of chinese char-

acters: The state-of-the-art,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 26, no. 2, pp. 198–213, 2004. [cited at p. 6]

[6] G. Taubman, “MusicHand: A handwritten music recognition system,” 2005,

Honors thesis. [cited at p. 6, 12]

[7] O. Ejofodomi, S. Ross, A. Jendoubi, M. Chouikha, and J. Zeng, “Online

handwritten circuit recognition on a Tablet PC,” 33rd Applied Imagery Pat-

tern Recognition Workshop (AIPR’04), pp. 241–245, 2004. [cited at p. 6]

58

BIBLIOGRAPHY 59

[8] L. B. Kara, “Automatic parsing and recognition of hand-drawn sketches for

pen-based computer interfaces,” Ph.D. dissertation, Department of Mechan-

ical Engineering, Carnegie Mellon University, Pittsburgh, PA, Sept. 2004.

[cited at p. 6, 25]

[9] L. M. Gennari, L. B. Kara, T. F. Stahovich, and K. Shimada, “Combin-

ing geometry and domain knowledge to interpret hand-drawn diagrams,”

Computers and Graphics, vol. 29, no. 4, pp. 547–562, 2005. [cited at p. 7, 11,

30]

[10] C. Alvarado and R. Davis, “Dynamically constructed Bayes nets for multi-

domain sketch understanding,” in Proceedings of IJCAI-05, San Francisco,

California, August 1 2005, pp. 1407–1412. [cited at p. 8, 9]

[11] C. Alvarado, “Multi-domain sketch understanding,” Ph.D. dissertation,

Massachusetts Institute of Technology, August 2004. [cited at p. 8, 9]

[12] T. Hammond and R. Davis, “LADDER: A sketch recognition language,”

in MIT Computer Science and Artificial Intelligence Laboratory Annual Re-

search Abstract. MIT CSAIL, September 2004. [cited at p. 8]

[13] C. Alvarado, M. Oltmans, and R. Davis, “A framework for multi-domain

sketch recognition,” AAAI Spring Symposium on Sketch Understanding, pp.

1–8, 2002. [cited at p. 9]

[14] O. Veselova, “Perceptually based learning of shape descriptions,” Mas-

ter’s thesis, Massachusetts Institute of Technology, Cambridge, MA, 2003.

[cited at p. 9]

[15] O. Veselova and R. Davis, “Perceptually based learning of shape descrip-

tions,” Proceedings of the Nineteenth National Conference on Artificial In-

telligence (AAAI-04), pp. 482–487, 2004. [cited at p. 9]

[16] T. M. Sezgin and R. Davis, “HMM-based efficient sketch recognition,” in

Proceedings of the International Conference on Intelligent User Interfaces

(IUI’05). New York, New York: ACM Press, January 9-12 2005, pp. 281–

283. [cited at p. 10]

[17] D. M. A. Lumini and D. Maltoni, “Inexact graph matching for finger-

print classification,” Machine Graphics and Vision Special Issue on Graph

BIBLIOGRAPHY 60

Trasformations in Pattern Generation and CAD, vol. 8, no. 1, pp. 231–248,

Sept. 1999. [cited at p. 10, 56]

[18] C. Calhoun, T. F. Stahovich, T. Kurtoglu, and L. B. Kara, “Recognizing

multi-stroke symbols,” AAAI Spring Symposium 2002, Sketch Understand-

ing, 2002. [cited at p. 10, 11, 20]

[19] E. Bengoetxea, “Inexact graph matching using estimation of distribu-

tion algorithms,” Ph.D. dissertation, Ecole Nationale Supérieure des

Télécommunications, Paris, France, Dec. 2002. [cited at p. 11, 12]

[20] D. Eppstein, “Subgraph isomorphism in planar graphs and related prob-

lems,” Journal of Graph Algorithms & Applications, vol. 3, no. 3, pp. 1–27,

1999. [cited at p. 12]

[21] R. Brooks, “Exact probabilistic inference for inexact graph matching,”

Apr. 2003, McGill Centre for Intelligent Machines. [Online]. Available:

http://www.cim.mcgill.ca/∼rbrook/graphs/graph.pdf [cited at p. 12]

[22] S. X. Liao and Q. Lu, “A study of moment functions and its use in Chinese

character recognition,” International Conference on Document Analysis and

Recognition, 1997. [cited at p. 12]

[23] S. X. Liao, A. Chiang, Q. Lu, and M. Pawlak, “Chinese character recogni-

tion via Gegenbauer moments,” 16th International Conference on Pattern

Recognition (ICPR’02), vol. 3, p. 30485, 2002. [cited at p. 12]

[24] H. Hse and A. R. Newton, “Sketched symbol recognition using

Zernike moments,” International Conference on Pattern Recognition, 2004.

[cited at p. 12]

[25] S. H. Ong and P. A. Lee, “Image analysis by Tchebichef moments,” IEEE

Transactions on Image Processing, Sept. 2001. [cited at p. 12]

[26] J. Arvo and K. Novins, “Fluid sketches: continuous recognition and mor-

phing of simple hand-drawn shapes,” in UIST ’00: Proceedings of the 13th

annual ACM symposium on User interface software and technology. New

York, NY, USA: ACM Press, 2000, pp. 73–80. [cited at p. 13, 14]

http://www.cim.mcgill.ca/~rbrook/graphs/graph.pdf

BIBLIOGRAPHY 61

[27] D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body

transformations: a comparison of four major algorithms,” Machine Vision

and Applications, vol. 9, pp. 272–290, 1997. [cited at p. 35]

[28] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman to

master. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

1999. [cited at p. 42]

[29] D. Reilly. (2006, June) Top ten errors java programmers make. Last accessed

25 November 2006. [Online]. Available: http://www.javacoffeebreak.com/

articles/toptenerrors.html [cited at p. 43]

[30] M. Oltmans, C. Alvarado, and R. Davis, “ETCHA Sketches: Lessons learned

from collecting sketch data,” in Making Pen-Based Interaction Intelligent

and Natural. Menlo Park, California: AAAI Fall Symposium, October

21-24 2004, pp. 134–140. [cited at p. 55]

[31] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edi-

tion). Wiley-Interscience, 2000. [cited at p. 63]

[32] P. Bourke. (1989, Apr.) Intersection point of two lines. Last accessed

25 November 2006. [Online]. Available: http://astronomy.swin.edu.au/
∼pbourke/geometry/lineline2d [cited at p. 67]

[33] ——. (1988, Oct.) Minimum distance between a point and a line. Last

accessed 25 November 2006. [Online]. Available: http://astronomy.swin.

edu.au/∼pbourke/geometry/pointline [cited at p. 67]

http://www.javacoffeebreak.com/articles/toptenerrors.html
http://www.javacoffeebreak.com/articles/toptenerrors.html
http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d
http://astronomy.swin.edu.au/~pbourke/geometry/lineline2d
http://astronomy.swin.edu.au/~pbourke/geometry/pointline
http://astronomy.swin.edu.au/~pbourke/geometry/pointline

Appendices

62

Appendix A

Classifier Tutorial

This section gives a brief introduction to linear classifiers and the motivation

behind the use of Gaussian distributions. This knowledge is needed to un-

derstand the methods employed in this study. For an excellent introduction

to the pattern recognition methodology see [31].

In mathematics and computer science a classifier can be described as a

mapping from a (discrete or continuous) feature space to a discrete set of

labels. If an object can be represented as a vector of feature-values, various

methods exist that can be used to “label” the object as of a certain class.

A.1 Linear classifiers

Assume one has the task of creating a system that differentiates between

apples and oranges. Further assume one can obtain data from two sensors:

one for the weight and one for the colour of a single fruit. To complicate

things assume the apples are reddish-yellow1.

Fig. A.1 shows data that was collected from a few samples of the fruit.

1Cripps Pink cultivar

63

APPENDIX A. CLASSIFIER TUTORIAL 64

Redness

Weight

?

Apples

Oranges

? Unknown Fruit

x

y

Figure A.1: Measurable features of Apples and Oranges

Identifying an unknown fruit can be done in a number of ways. A simple

method would be to determine the euclidean distance of the feature repre-

senting the fruit to the mean point of the two classes and labelling it to the

closest class. Equations (A.1), and (A.2) would then represent the distance

metrics for the classes Apples and Oranges, respectively.

FA(〈x, y〉) = 1
distance(〈x,y〉,〈x̄A,ȳA〉)

= 1√
(x−x̄A)2+(y−ȳA)2

(A.1)

FO(〈x, y〉) = 1
distance(〈x,y〉,〈x̄O,ȳO〉)

= 1√
(x−x̄O)2+(y−ȳO)2

(A.2)

Using this technique to classify the feature vector 〈xU , yU〉 of the unknown

fruit, indicated in Fig. A.1, would yield a value of FA(〈xU , yU〉) larger than

FO(〈xU , yU〉). The unknown fruit would thus be labelled as an apple.

APPENDIX A. CLASSIFIER TUTORIAL 65

A.2 Gaussian distributions

To the human mind, classification of the unknown fruit in Fig. A.1 as an

apple seems wrong. The examples for the apples are much closer to their

average than the oranges are to theirs. This variance from their average

suggest that orange measurements are more distributed and the unknown

is more likely to be an orange, as the apples have a small variance.

Variances from means should therefore also be considered in the classifica-

tion process. Variances from measurements in the real world usually follow

normal or Gaussian distributions.

0

0.25

0.5

0.75

1

−6 −4 −2 0 2 4 6

Figure A.2: Euclidean and Gaussian distance metrics

G(x) =
1√

2πσ2
e−(x−x̄)2/2σ2

(A.3)

Equation (A.3) shows the Gaussian function where σ > 0 and −∞ < x̄ < ∞
are real constants. x, x̄ and σ represent the feature value, average feature

value from training data and the variance of training data. Fig. A.2 shows

the Gaussian probability density function compared to the reciprocal of the

euclidean distance.

The variance parameter in the gaussian function can easily be used to take

into account the variances of the fruit features.

APPENDIX A. CLASSIFIER TUTORIAL 66

A.3 Dimensional variance

Redness

Weight

?

Apples

Oranges

? Unknown Fruit

x

y

Figure A.3: Measurable features of Apples and Oranges

Fig. A.3 demonstrates a different issue that needs to be addressed by a

classifier: The data variance can differ over different dimensions. A simple

way to compensate for this is to derive a different deviation for each of the

dimensions.

It should be noted that variances do not always differ strictly along dimen-

sional lines. In these cases the co-variances (variances that are not exactly

along dimensional lines) could also be leveraged. This is, however, beyond

the scope of this simple introduction.

Appendix B

Intersection Analysis

The relatively straightforward mathematical algorithms used to find inter-

section information are explained in [32] and [33] and will only be sum-

marised here.

P3
P2

P4
P1 line a

line b

Figure B.1: Two line primitives intersecting.

Given two line segments, as pictured in Fig. B.1, points Pa and Pb that lie

on the segments can be defined as

Pa = 〈x1, y1〉+ ua(〈x2, y2〉 − 〈x1, y1〉) (B.1)

Pb = 〈x3, y3〉+ ub(〈x4, y4〉 − 〈x3, y3〉) (B.2)

where ua and ub are thus scaling factors of the line segments.

67

APPENDIX B. INTERSECTION ANALYSIS 68

Solving for ua and ub where the points intersect (i.e. Pa = Pb) yields

ua =
(x4 − x3)(y1 − y3)− (y4 − y3)(x1 − x3)

(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)
(B.3)

ub =
(x2 − x1)(y1 − y3)− (y2 − y1)(x1 − x3)

(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)
(B.4)

Various properties on the intersection can then be derived:

• If the denominator for the equations for ua and ub is 0 then the two

lines are exactly parallel.

• If the denominator and numerator for the equations for ua and ub are

0 then the two lines are coincident.

• If ua or ub lie inside the range (0, 1) then the corresponding line seg-

ment contains the intersection point. If both lie within this range then

the intersection point is within both line segments.

• The angle of intersection can also be determined by simply taking the

difference between the angles of the individual lines.

Appendix C

Code Structure

FeatureExtractorSimpleFeatureExtractor
FeaturesBayesianClassifier

BayesianClassifier
PrimitiveClassifier

«interface»Classifier+classify(primitives:Primitives)

Intersection+type:char+point:Point+ua,ub,angle:floatSymbol
Primitive+points:Points+snap_points:Points

Figure C.1: Diagram of symbol related classes.

69

APPENDIX C. CODE STRUCTURE 70

Jagged
Crescent

Sampler

Circle

Intersection+type:char+point:Point+ua,ub,angle:float

Primitive+points:Points+snap_points:PointsCornerLine
Spiral

Point+x,y,t:float+point

Figure C.2: Diagram of primitive related classes.

APPENDIX C. CODE STRUCTURE 71

〈root〉
bayesians.py python source code

.

.

tools.py

components XML files representing symbol definitions

and.xml

bjt.xml

.

.

resistor.xml

primitives primitives in XML files

Circle

001.xml multiple examples of a circle in a single XML file

.

.

nnn.xml

Corner

.

.

Spiral

pygraphlib modified version of the pygraphlib library

reports various reporting subdirectories

ar graphs generated attributed relational graphs

classifier accuracy various symbol classifier statistics

planar graphs generated planar graphs

primitive accuracy various primitive classifier statistics

testdata examples of symbols

and

001.xml a single example of an AND gate in an XML file

.

.

nnn.xml

.

.

resistor

component properties.xml XML file with SPICE and port information of symbols

Figure C.3: A summary of the directory tree of the Python implementation.

Folders are indicated in bold and italic.

APPENDIX C. CODE STRUCTURE 72

T
ab

le
C

.1
:

P
y
th

on
so

u
rc

e
fi
le

s
(e

x
cl

u
d
in

g
m

o
d
ifi

ed
li
b
ra

ri
es

)

fi
le

n
am

e
li
n
e

co
u
n
t

d
es

cr
ip

ti
on

b
ay

es
ia

n
s.

p
y

30
1

N
ai

ve
B

ay
es

ia
n

cl
as

si
fi
er

ci
rc

u
it

sp
ac

e.
p
y

35
3

C
ir

cu
it

m
an

ag
em

en
t

an
d

S
P

IC
E

ge
n
er

at
io

n

co
d
es

ta
te

.p
y

11
3

P
ro

fi
le

r
an

d
co

d
e

su
m

m
ar

y
to

ol
s

ev
en

t
re

co
rd

er
s.

p
y

22
3

M
an

ag
es

in
te

rf
ac

e
b
et

w
ee

n
in

te
rf

ac
e

an
d

re
co

gn
it

io
n

en
gi

n
es

fc
in

te
rf

ac
e.

p
y

65
9

w
x
W

id
ge

ts
F
lo

at
C

an
va

s
in

te
rf

ac
e

fe
at

u
re

gr
ap

h
s.

p
y

11
9

F
ea

tu
re

ve
ct

or
p
lo

tt
in

g
to

ol
s

gr
ap

h
co

m
p
ar

is
on

.p
y

34
5

In
te

rs
ec

ti
on

gr
ap

h
m

at
ch

in
g

li
n
et

o
ol

s.
p
y

10
71

P
ri

m
it

iv
e

co
n
st

ru
ct

io
n

an
d

in
te

rs
ec

ti
on

to
ol

s

p
la

n
ar

gr
ap

h
s.

p
y

18
6

P
la

n
ar

gr
ap

h
m

at
ch

in
g

re
co

gn
it

io
n
.p

y
47

C
om

b
in

ed
sy

m
b
ol

cl
as

si
fi
er

s

te
st

ac
cu

ra
cy

.p
y

22
4

S
y
m

b
ol

re
co

gn
it

io
n

ac
cu

ra
cy

re
p
or

t
ge

n
er

at
io

n

to
ol

s.
p
y

59
2

V
ar

io
u
s

al
go

ri
th

m
s

u
se

d
b
y

sy
st

em

T
o
ta

l
4
2
3
3

	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Scope of Solution
	1.3 Study Overview

	2 Related Research
	2.1 Intersection Features
	2.2 Glyph Language
	2.3 Stroke Order Analysis
	2.4 Graph Matching
	2.5 Moments
	2.6 Fluid Sketches
	2.7 Research Summary

	3 Prototype Development
	3.1 System Requirements
	3.1.1 Stroke Interpretation
	3.1.2 Primitive Interpretation
	3.1.3 Recognition Stages

	3.2 Design Overview
	3.3 Stroke Capture
	3.4 Primitive Identification
	3.4.1 Opt-out parameters

	3.5 Primitive Clustering
	3.6 Symbol Recognition
	3.6.1 Primitive Intersections
	3.6.2 Symbol Classifiers
	3.6.3 Training Data

	3.7 Symbol Properties
	3.7.1 Primitive Mapping
	3.7.2 Symbol Rotation and Translation

	3.8 Interface
	3.9 Design Summary
	3.10 Implementation
	3.10.1 Tools
	3.10.2 Implementation Methodology
	3.10.3 Data Formats

	4 Evaluation
	4.1 Recognition Accuracy
	4.1.1 Primitive Identification Accuracy
	4.1.2 Symbol Recognition Accuracy

	4.2 Performance
	4.3 Usability Analysis

	5 Recommendations and Conclusions
	5.1 Future Work
	5.1.1 Algorithm Enhancements
	5.1.2 Interface Enhancements

	5.2 Suggested Applications
	5.3 Conclusions

	Bibliography
	A Classifier Tutorial
	A.1 Linear classifiers
	A.2 Gaussian distributions
	A.3 Dimensional variance

	B Intersection Analysis
	C Code Structure

